Serie technologique e3c Corrigé du nº 17 mai 2020

ÉPREUVE DE MATHÉMATIQUES - Première technologique

PARTIE I

Exercice 1 5 points

Automatismes 5 points

Sans calculatrice

Durée : 20 minutes

1. Le taux d'évolution est :
$$\frac{210-250}{250} \times 100 = -\frac{40}{250} \times 100 = 16\%$$
.

2.
$$(x-3)(2x+5) = 2x^2 + 5x - 3x - 15 = 2x^2 + 2x - 15$$
.

3.
$$g\left(\frac{2}{7}\right) = 3 \times \frac{2}{7} - 6 = \frac{6}{7} - \frac{42}{7} = -\frac{36}{7}$$
.

4. Il faut résoudre dans \mathbb{R} l'équation 3x-6=2, soit 3x=8 et $x=\frac{8}{3}$. L'antécédent de 2 est $\frac{8}{3}$.

5.
$$3x-6>0$$
 si $x>2$;

$$3x - 6 < 0$$
 si $x < 2$;

$$3x - 6 = 0$$
 si $x = 2$.

- **6.** f(x) > 0 sur [1; 6];
 - f(x) < 0 sur [-1; 1].
- **7.** On a $f(3) \approx 6$.
- **8.** On a f(4) = 6, donc $S = \{4\}$.
- **9.** $f(x) \ge 3 \text{ sur } [2; 5,5].$
- **10.** Avec les deux points de la droite de coordonnées (0;4) et (2;0), on obtient un coefficient directeur de $\frac{0-4}{2-0} = -2$. Comme l'ordonnée à l'origine est 4, on a donc : $M(x;y) \in D$ si y = -2x + 4.

PARTIE 2

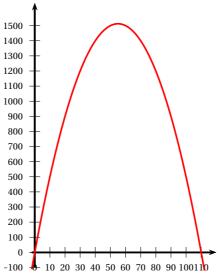
Calculatrice autorisée selon la réglementation en vigueur Cette partie est composée de trois exercices indépendants

EXERCICE 2 5 points

$$r(x) = -0.5x^2 + 55x.$$

X	0	10	20	30	40	50	60	70	80	90	100	110
r(x)	0	500	900	1 200	1 400	1500	1500	1 400	1200	900	500	0

- **1. a.** On lit dans le tableau : r(0) = r(110) = 0 : les racines sont donc 0 et 110.
 - **b.** $r(x) = -0.5x^2 + 55x = x(-0.5x + 55) = x \times 5(-0.1x + 11) = -0.5x(x 110).$
- 2. a



b. Le sommet de la parabole a pour sommet $S\left(\frac{-b}{2a}; r\left(\frac{-b}{2a}\right)\right) = (55; 1512,5).$

3.

x	$-\infty$	55	+∞
r		1 512,5	

EXERCICE 3 5 points

$$f(t) = 0.3t^3 - 1.8t^2 + 2.7t + 0.8.$$

- **1.** La glycémie à jeun est égale à f(0) = 0.8 g.L⁻¹.
- **2. a.** La fonction polynôme f est dérivable sur \mathbb{R} , donc sur [0;3] et sur cet intervalle : $f'(t) = 0.9t^2 3.6t + 2.7 = 0.9(t^2 4t + 3)$.

Or
$$(t-1)(t-3) = t^2 - 3t - t + 3 = t^2 - 4t + 3$$
, donc:

$$f'(t) = 0,9(t-1)(t-3).$$

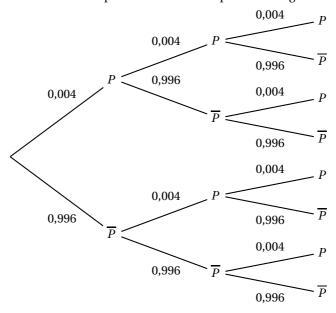
b. Avec l'écriture factorisée on en déduit que le signe de f'(t) est celui du produit (t-1)(t-3):

t	0		1		3
t-1		_	0	+	
t-3		_		-	0
(t-1)(t-3)		+	0	_	0

- Sur [0; 1[, f'(t) > 0 : la fonction est croissante de <math>f(0) = 0.8 à f(1) = 0.3 1.8 + 2.7 + 0.8 = 2;
- Sur [1; 3[, f'(t) < 0: la fonction est décroissante de f(1) = 2 à f(3) = 8, 1 16, 2 + 8, 1 + 0, 8 = 0, 8.
- f'(1) = 0: la fonction a un maximum sur [0; 3] égal à f(1) = 2.
- **3.** D'après la question précédente la glycémie est maximale au bout d'une heure et celleci vaut $2\ g.L^{-1}$.
 - **b.** On peut suspecter un diabète si au cours d'un test la glycémie est supérieure aux valeurs données par la fonction f.

EXERCICE 4 5 points

- 1. **a.** Dans la population chaque personne a la même probabilité $p = \frac{1}{250} = \frac{4}{1000} = 0,004$ d'être porteuse du gène et chaque tirage est indépendant des autres, donc il s'agit d'un schéma de Bernouilli de paramètres n = 3 et p = 0,004.
 - **b.** En notant *P* l'évènement : « la personne choisie est porteuse du gène ».



c. L'évènement contraire est « aucune des trois personnes n'est porteuse du gène ». Or cet évènement a pour probabilité (branche du bas : $0,996 \times 0,996 \times 0,996 \approx 0,9880$, soit 0,988 au millième près.

Donc la probabilité qu'au moins une personne parmi les trois soit porteuse du gène est environ 1-0,988=0,012.

- a. Voir l'annexe.
- **b.** L'affichage indique qu'il faut tester 575 personnes pour trouver une personne porteuse du gène.

Annexe à remettre avec la copie

EXERCICE 4 question 2. a.

1 from random import randint
2 def malade():
3 n=1
4 X=randint(1, 250)
5 while X!= 1:
6 X = randint(1, 250)
7 n = n+1
8 return n