∞ Baccalauréat Première Métropole-La Réunion Série nº 2 ∞ série technologique e3c Corrigé du nº 20 mai 2020

ÉPREUVE DE MATHÉMATIQUES - Première technologique

PARTIE I

Exercice 1 5 points

Automatismes Sans calculatrice Durée: 20 minutes

1.
$$\frac{3}{4} \times \frac{1}{3} = \frac{3 \times 1}{4 \times 3} = \frac{1}{4}$$
.
2. $10 \times \frac{10}{100} = \frac{100}{100} = 1$.

2.
$$10 \times \frac{10}{100} = \frac{100}{100} = 1$$

3.
$$x^2 - 6x + 9 = (x - 3)^2$$

5.
$$3x-2>1$$
 d'où $3x>3$ puis $xx>1: S=]1; +\infty[$.

6.
$$A(x; 3) \in (D)$$
 si $3 = 2x - 1$ ou $4 = 2x$, soit $x = 2$.

7.
$$V = \frac{B \times h}{3}$$
 ou $B \times h = 3V$ et $B = \frac{3V}{h}$.

8.
$$10^7 \times 10^{-2} = 10^{7-2} = 10^5$$
.

9.
$$x^2 = 4$$
 ou $x^2 - 4 = 0$ ou $(x + 2)(x - 2) = 0$: donc deux solutions -2 et 2.

10. Augmenter de 100 % c'est multiplier par
$$1 + \frac{100}{100} = 1 + 1 = 2$$
.

Donc augmenter deux fois de 100 %, c'est multiplier deux fois par 2, donc par 4! (soit une augmentation de 300 %)

PARTIE II

Calculatrice autorisée

Cette partie est composée de trois exercices indépendants

5 points **Exercice 2**

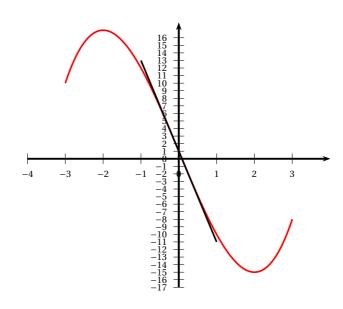
1. La fonction polynôme est dérivable sur \mathbb{R} et donc en particulier sur [-3; 3] et sur cet inter-

$$f'(x) = 3x^2 - 12 = 3(x^2 - 4) = 3(x - 2)(x + 2).$$

- **2.** f'(x) > 0, sauf sur l'intervalle]-2; 2[où f'(x) < 0 et f'(-2) = f'(2) = 0.
- 3. On en déduit que la fonction f est croissante sauf sur l'intervalle [-3; 3] où elle est décrois-

De plus $f(-2) = -8 - 12 \times (-2) + 1 = 17$ est un extremum (maximum) et $f(2) = 8 - 12 \times 2 + 1 = 17$ −15 est un extremum (minimum).

4.



a. On sait qu'une équation de la droite Δ tangente à la courbe C au point d'abscisse 0 est :

$$M(x\,;\,y)\in\Delta$$
 si $y-f(0)=f'(0)(x-0)$.
Avec $f(0)=1$ et $f'(0)=-12$, on obtient : $M(x\,;\,y)\in\Delta$ si $y-1=-12(x-0)$ ou $y=-12x+1$.

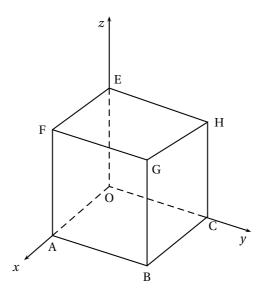
b. Résoudre dans l'intervalle [-3; 3] l'équation f(x) = -12x + 1 c'est trouver des points communs à C et à Δ : il n'y a que le point O. Donc $S = \{0\}$.

Exercice 3 5 points

On munit l'espace d'un repère orthonormal d'origine O. On considère les points :

$$A(1;0;0)$$
 $C(0;1;0)$ $E(0;0;1)$

On construit alors le cube OABCEFGH:

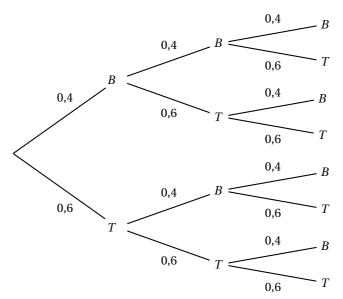


- 1. G(1; 1; 1)
- **2.** On a EB² = $(1-0)^2 + (1-0)^2 + (0(-1)^2 = 1 + 1 + 1 = 3$, donc EB = $\sqrt{3}$.
- **3.** Le plan vertical (FAC) contient aussi le sommet H.
- **4.** La projection du point E sur le plan (ABC) parallèlement à la droite (FB) est le point C. ((FB) est parallèle à (EC).)
- **5.** Dans la projection verticale suivant la droite (FA)le point M milieu de [AH] se projette au milieu des projetés de A et de H soit A et C.

Donc M' est le milieu de [AC], diagonale du carré ABCO.

Exercice 4 5 points

1. Soit B l'évènement « l'usager prend le bus » et T l'évènement « l'usager prend le tramway ». On peut dresser l'arbre pondéré pour trois passagers :



- **2.** On a $p(BBB) = 0.4 \times 0.4 \times 0.4 = 0.064$.
- **3.** On note X la variable aléatoire associée au nombre de personnes qui prennent le bus. On donne ci-dessous la loi de probabilité de la variable aléatoire X:

a	0	1	2	3
p(X = a)	0,216	0,432	0,288	0,064

- **a.** $(X \le 2)$ désigne l'évènement : « au plus deux usagers prennent le bus ».
- **b.** $p(X \le 2) = p(X = 0) + p(X = 1) + p(X = 2) = 0,216 + 0,432 + 0,288 = 0,936.$
- **c.** On a $E(X) = 0 \times 0,216 + 1 \times 0,432 + 2 \times 0,28 + 3 \times 0,064 = 0 + 0,432 + 0,56 + 0,192 = 1,184$. Cela signifie que sur un grand nombre d'usagers un peu plus de 1 sur 3 prendra le bus en moyenne.