Serie technologique e3c Corrigé du nº 62 − mai 2020

ÉPREUVE DE MATHÉMATIQUES - Première technologique

PARTIE I

Exercice 1 5 points

Automatismes Sans calculatrice Durée : 20 minutes

- 1. Augmenter de 5 % c'est multiplier par $1 + \frac{5}{100} = 1 + 0.05 = 1.05$.
- **2.** Elle a $\frac{14}{100} \times 350 = \frac{14 \times 350}{100} = \frac{4900}{100} = 49$ (mangas).
- 3. $2x^2 5 = 45$, d'où $2x^2 = 50$ ou $x^2 = 25$. Il existe deux réels dont le carré est égal à 25 : -5 et 5. $S = \{-5; 5\}$.
- **4.** $(2x+1)^2 = (2x)^2 + 1^2 + 2 \times 2x \times 1 = 4x^2 + 4x + 1$.
- **5.** La droite a un coefficient directeur de $\frac{-1}{1} = -1$ et l'ordonnée à l'origine est égale à 1/2 L'équation réduite de (d) est donc : y = -x + 1.
- **6.** Le coefficient directeur est $\frac{6-(-1)}{3-1} = \frac{7}{2}$.

L'équation réduite est donc :

$$M(x; y) \in (AB)$$
 si $y = \frac{7}{2}x + b$ avec $b \in \mathbb{R}$.

Donc A(1; -1)
$$\in$$
 (AB) si -1 = $\frac{7}{2}$ + b , d'où b = -1 - $\frac{7}{2}$ = - $\frac{9}{2}$.

$$M(x; y) \in (AB) \text{ si } y = \frac{7}{2}x - \frac{9}{2}.$$

- 7. f(-2) = f(1) = 0;
 - f(x) > 0 sur l'intervalle] 2; 1[;
 - f(x) < 0 sur l'intervalle] $-\infty$; -2[et sur]1; $+\infty$ [.
- **8. a.** f(0) = 5;
- **9. b.** −2 a deux antécédents : −6 et 5.
- **10. c.** g(x) = 0 a trois solutions : -5, 2, et 7.

PARTIE 2

Calculatrice autorisée selon la réglementation en vigueur Cette partie est composée de trois exercices indépendants

EXERCICE 2 5 points

- 1. On a $0.343 \times 4513 \approx 1547.96$ soit à l'unité près 1548.
- 2. Voir à la fin.
- 3. Sur les 2 103 adolescents 1 471 préfèrent regarder un film d'action, d'où $f = \frac{1471}{2103} \approx 0,699$ soit pratiquement 70 %.
- 4. évènements suivants :
 - **a.** La probabilité d'interroger un adolescent qui préfère les films d'action est égale à : $P\left(B\cap\overline{C}\right) = \frac{1471}{4513} \approx 0,358, \text{ soit } 0,36 \text{ au centième près.}$
 - **b.** Sur les 2410 adultes 862 préfèrent regarder un film d'action, d'où une provabilité de $\frac{862}{2410} \approx 0,357$, soit 0,36 au centième près.

1. • Les intérêts au bout d'une année s'élèvent à :

$$2000 \times 0,0225 = 45$$
; donc $C_1 = 2000 + 45 = 2045$.

- Puis $C_2 = C_1 + 45 = 2090$.
- **2.** $C_3 = C_2 + 45 = 2135$.
- **3.** Chaque année 45 € d'intérêts s'joutent, donc quel que soit le naturel n:

$$C_{n+1} = C_n + 45.$$

Cette égalité montre que la suite (C_n) est une suite arithmétique de raison 45 et de premier terme 2 000.

4. On sait que quel que soit $n \in \mathbb{N}$, $C_n = 2000 + 45n$.

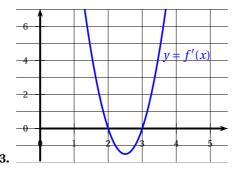
Il faut donc résoudre : 2000 + 45
$$n \ge 4000$$
, soit $45 n \ge 2000$ ou $n \ge \frac{2000}{45}$.

Or
$$\frac{2000}{45} \approx 44, 4$$
.

Le capital sera doublé à la 45^e année.

- a. Voir à la fin
- **b.** L'algorithme s'arrête pour n = 45.

EXERCICE 4 5 points


Soit $f: x \mapsto 2x^3 - 15x^2 + 36x - 27$ définie sur [1; 4].

- 1. **a.** $(x-3)^2 = x^2 6x + 9$, donc: $(x-3)^2(2x-3) = (x^2 6x + 9)(2x-3) = 2x^3 3x^2 12x^2 + 18x + 18x 27 = 2x^3 15x^2 + 36x 27 = f(x)$.
 - **b.** La question précédente a donné l'écriture factorisée de f(x), donc

$$f(x) = 0 \text{ si } (x-3)^2 (2x-3) \text{ ou} \begin{cases} (x-3)^2 = 0 \\ 2x-3 = 0 \end{cases} \text{ ou encore } \begin{cases} x-3 = 0 \\ 2x-3 = 0 \end{cases} \text{ et enfin}$$

$$\begin{cases} x = 3 \\ x = \frac{3}{2} \end{cases} . \text{ Donc } S = \left\{ \frac{3}{2}; 3 \right\}.$$

2. f est une fonction polynôme dérivable sur \mathbb{R} , donc sur [1; 4] et sur cet intervalle : $f'(x) = 6x^2 - 30x + 36$.

- **a.** On lit f'(2) = f'(3) = 0, donc f'(3) = 0 annule en f'(3) = 0.
- **b.** Le résultat précédent montre que $f'(x) = a(-2)(x-3) = a(x^2 2x 3x + 6) = a(x^2 5x + 6) = ax^2 5ax + 6a$.

On a donc a = 6 et f'(x) = 6(x-2)(x-3).

- 4. On a donc:
 - f'(x) > 0 sur [1; 2[et sur]3; 4] : la fonction f est croissante sur [1; 2[de f(1) = -4 à f(2) = 1 et sur]3; 4] de f(3) = 0 à f(4) = 5;
 - f'(x) < 0 sur]2; 3[: la fonction f est décroissante sur]2; 3[de f(2) = 1 à f(3) = 0;
 - f'(2) = f'(3) = 0: les points d'abscisses 2 et 3 sont des extremums de la courbe représentative de f.

Annexe à remettre avec la copie

EXERCICE 2

	Adolescents	Adultes	Total
Film d'action	1 471	862	2 3 3 3
Comédie ou drame	632	1 548	2 180
Total	2 103	2410	4513

 $C \leftarrow 2000$ $n \leftarrow 0$ Tant que $u \le 2000$ $u \leftarrow u + 45$ $n \leftarrow n + 1$ Fin Tant que $A \leftarrow 2020 + n$