● e3C nº 56 Terminale technologique ● PARTIE I

Automatismes (5 points)

Sans calculatrice

Durée: 20 minutes

Exercice 1

5 points

Pour chacune des questions suivantes, déterminer la bonne réponse.

	Énoncé	Réponse						
1.	Après une baisse de 10 %, un ar-							
	ticle coûte 180 €. L'ancien prix est :							
	a. $170 \in$ b. $190 \in$ c. $198 \in$ d. $200 \in$							
2.	$\frac{5^{1,5}}{5^2}$ est égal à :							
	a. $5^{0,75}$ b. 5^{-3} c. $5^{-0,5}$ d. $5^{0,5}$							
3.	On donne les points $A(0; -5)$ et $B(-3; 2)$.							
	Le coefficient directeur de la droite (AB) est égal à :							
	a. $-\frac{3}{7}$ b. $-\frac{7}{3}$ c. 1 d. -1							
4.	La fonction f définie par sur \mathbb{R} par $f(x) = 2 \times 0.75^x$ est :							
	a. croissante sur b. décroissante c. constante sur							
	\mathbb{R} sur \mathbb{R}							
5.	Soit la fonction g définie sur $]0$; $+\infty[$ par							
	$g(x) = -3 + \frac{1}{x}$.							
	$\lim_{x \to +\infty} g(x) \text{ est égale à :}$							
	a. -3 b. $-\infty$ c. 0 d. $+\infty$							
6.	A et B sont deux évènements tels que $P(A \cap B) = \frac{2}{5}$ et							
	$P(A) = \frac{2}{3}.$							
	Pour que A et B soient indépen-							
	dants, $P(B)$ doit prendre la valeur :							
	a. $\frac{3}{5}$ b. $\frac{4}{15}$ c. 1 d. $\frac{5}{3}$							

	Énoncé	Réponse			
7.	La suite géométrique (v_n) de premier terme $v_1 = 10$ et				
	de raison $q = 0.3$ a pour terme général, pour tout entier				
	$n \geqslant 1$				
	a. $v_n = 0, 3 \times 10^n$ b. $v_n = 10 \times 0, 3^n$ c. $v_n = 10 \times 0, 3^{n-1}$ d. $v_n = 0, 3 \times 10^{n-1}$				
	c. $v_n = 10 \times 0.3^{n-1}$ d. $v_n = 0.3 \times 10^{n-1}$				
8.	La somme $S = \sum_{k=0}^{7} u_i = u_0 + u_1 + u_7$ compte :				
	a. 3 termes b. c. 4 termes				
	c. 7 termes 8 termes				
9.	La valeur que l'on doit donner à <i>x</i> pour que				
	les nombres 14, x et 56 soient les termes				
	consécutifs d'une suite arithmétique est :				
	a. 4 b. 28 c. 35 d. 224				
10.	Voici une fonction écrite en langage Python :				
	def terme(n):				
	u = 5				
	for i in range(1,n+1):				
	u = u-3				
	return u				
	Que renvoie l'appel terme(6)?				
	a. −13 b. −16 c. −19 d. −22				

Mathématiques: PARTIE II

Calculatrice autorisée

Durée: 1 h 30

Cette partie est composée de trois exercices indépendants

Exercice 2: 5 points

Depuis son inscription au patrimoine mondial de l'Unesco le 2 juillet 2018, la chaîne des Puys attire des visiteurs de plus en plus nombreux.

Le 20 août 2020, un groupe de touristes a participé à une excursion sur le site avec ascension au sommet du Puy de Dôme, soit à pied par le sentier des muletiers, soit en train panoramique, suivie d'une entrée soit à Vulcania (parc d'attraction autour du volcanisme), soit à Lemptégy (exploration des entrailles d'un volcan).

On choisit au hasard un touriste de ce groupe et on note :

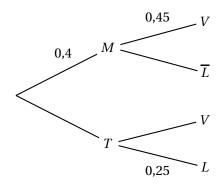
M : « le touriste est monté au sommet du Puy de Dôme à pied)

T : « le touriste est monté au sommet du Puy de Dôme en train)

V : « le touriste a pris une entrée à Vulcania)

L : « le touriste a pris une entrée à Lemptégy)

1. Recopier et compléter l'arbre pondéré en précisant les probabilités P(T), $P_M(L)$ et $P_T(V)$.



- **2.** Vérifier que la probabilité que le touriste ait pris une entrée à Vulcania est P(V) = 0,63.
- **3.** Déterminer la probabilité que le touriste soit monté en train au sommet du Puy de Dôme sachant qu'il a pris une entrée à Lemptégy.

On donnera d'abord la valeur exacte puis on arrondira au millième.

- **4.** Le prix du ticket de train est fixé à 11,50 €, l'entrée à Lemptégy à 12 € et l'entrée à Vulcania à 25 €.
 - **a.** Recopier et compléter le tableau suivant donnant la loi de probabilité de la dépense en euros d'un participant à cette excursion.

Dépense x_i	12	23,50	25	36,50
Probabilité	0,22			0,45

b. Calculer la dépense moyenne par participant en euros.

Exercice 3: 5 points

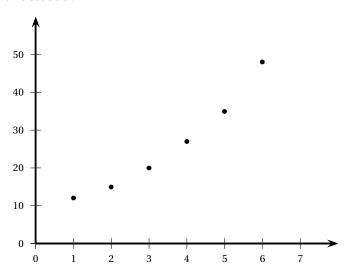
Dans le but de développer une commercialisation raisonnée en utilisant les circuits courts, la mairie d'une petite commune a regroupé les producteurs locaux favorables au projet et mis en place une distribution hebdomadaire centralisée.

Chaque semaine, les habitants peuvent passer leur commande jusqu'au mardi 18 h et la retirer le vendredi de 18 h à 20 h à la mairie.

Le tableau suivant indique le nombre de commandes passées les premières semaines.

Rang de la semaine x_i	1	2	3	4	5	6
Nombre de commandes y_i	12	15	20	27	35	48

Le nuage de points de coordonnées $(x_i; y_i)$ pour i variant de 1 à 6 est représenté dans le repère orthogonal ci-dessous :



- 1. On pose $z = \log y_i$.
 - **a.** Compléter le tableau de valeurs donné en annexe, en arrondissant à 10^{-2} près.
 - **b.** Représenter dans le repère orthogonal donné en annexe le nuage de points de coordonnées $(x_i; z_i)$.
- **2. a.** À l'aide de la calculatrice, déterminer une équation de la droite d'ajustement de z en x par la méthode des moindres carrés. On arrondira à 10^{-2} près.
 - **b.** Tracer la droite dans le repère précédent.
 - **c.** En déduire une estimation du nombre de commandes passées la 7^e semaine.

Exercice 4: 5 points

Un restaurateur prépare chaque jour *x* repas avec *x* compris entre 5 et 50. Le coût total quotidien de préparation de *x* repas est, en euros :

$$C(x) = 3x^2 - 110x + 1200.$$

Chaque repas préparé est vendu au prix de 40 €.

1. Vérifier que le bénéfice dégagé chaque jour par le restaurateur, pour *x* repas préparés et vendus, est :

$$B(x) = -3x^2 + 150x - 1200.$$

- **2. a.** Calculer la dérivée B'(x) et étudier son signe sur [5; 50].
 - **b.** En déduire le nombre de repas à préparer et à vendre chaque jour pour que le bénéfice soit maximal. Préciser ce bénéfice maximal.
- **3.** Le coût moyen unitaire de préparation de *x* repas compris entre 5 et 50, exprimé en euros, est donné par

$$f(x) = \frac{C(x)}{x} = 3x - 110 + \frac{1200}{x}$$
.

a. Calculer f'(x) et vérifier que pour tout x de [5; 50],

$$f'(x) = \frac{3(x-20)(x+20)}{x}.$$

- **b.** Étudier le signe de f'(x) et dresser le tableau de variation de f sur [5; 50].
- **c.** En déduire déterminer le nombre de repas qui donne le coût moyen unitaire minimal et préciser ce coût.