Secondarie → Baccalauréat L spécialité Nouvelle-Calédonie → novembre 2012

EXERCICE 1 6 points

Au premier janvier 2010, la population d'une ville était de 32 500 habitants, On considère que chaque année :

- le nombre d'habitants augmente de 2 % du fait des naissances et des décès ;
- 1500 habitants s'ajoutent à l'augmentation précédente du fait de nouveaux arrivants.

On note u_0 le nombre d'habitants de la ville au premier janvier 2010.

On note u_1 le nombre d'habitants de la ville au premier janvier 2011.

Pour tout n entier naturel, on note u_n le nombre d'habitants au premier janvier 2010+n

- **1. a.** Montrer que le nombre d'habitants de cette ville prévu au premier janvier 2011 est de 34 650.
 - b. Déterminer le nombre d'habitants de cette ville prévu au premier janvier 2012.
- **2.** Montrer que pour tout entier naturel n, on a $u_{n+1} = 1,02u_n + 1500$.
- **3.** Pour tout entier naturel *n*, on pose $v_n = u_n + 75000$.
 - **a.** Monlrer que la suite (v_n) est une suite géométrique de premier terme $v_0 = 107500$ et de raison q = 1,02.
 - **b.** Déterminer v_n en fonction de n.
 - **c.** En déduire u_n en fonction de n.
- **4.** En justifiant votre réponse, déterminer à partir de quelle année le nombre d'habitants de cette ville aura doublé par rapport à sa valeur au premier janvier 2010.

EXERCICE 2 4 points

Soient N et B deux nombres entiers naturels. On appelle Q le quotient entier de N par B.

Par exemple si B=3 et N=17 alors le quotient entier de N par B est Q=5. On considère l'algorithme :

Entrée	Deux entiers naturels N et B
Initialisation	Q = 1
Traitement	Tant que $Q \neq 0$
	Affecter à Q le quotient entier de N par B .
	Affecter à R la valeur $(N - Q \times B)$.
	Afficher R.
	Affecter à N la valeur de Q .

- 1. Quelles sont les valeurs successives de R affichées par cet algorithme pour B=2 et N=12?
- **2. a.** Quelles sont les valeurs successives de *R* affichées par cet algorithme pour *B* = 3 et *N* = 346?
 - b. Quelle est l'écriture de 346 en base 3.
- 3. Que permet de déterminer cet algorithme?

EXERCICE 3 5 points

Une maladie touche 20 % de la population d'une ville.

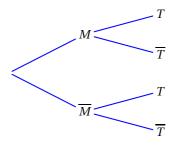
Lors d'un dépistage de la maladie, on utilise un test biologique qui a les caractéristiques suivantes :

- lorsque la personne est malade, la probabilité d'avoir un test positif est 0,85.
- lorsque la personne n'est pas malade, la probabilité d'avoir un test négatif est 0,95.

On choisit une personne au hasard dans cette population.

On note T l'évènement « la personne a un test positif à cette maladie » et M l'évènement « la personne est atteinte de cette maladie ».

- **1. a.** En utilisant les données de l'énoncé, donner les probabilités p(M), $p_M(T)$ et $p_{\overline{M}}(\overline{T})$.
 - b. Recopier et compléter l'arbre pondéré ci-dessous :



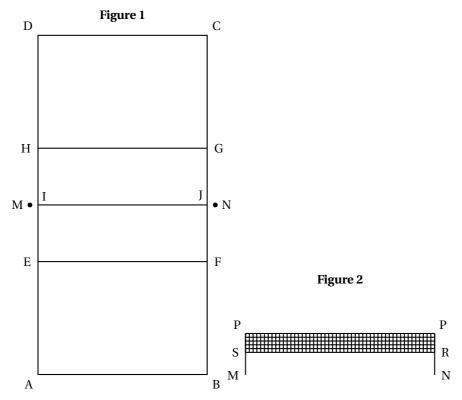
- **c.** Montrer que la probabilité de l'évènement *T* est égale à 0,21.
- **2.** On appelle valeur prédictive positive du test, la probabilité qu'une personne soit malade sachant que le test est positif. On estime que ce test est efficace pour une population donnée lorsque celte probabilité est supérieure à 0,95.
 - **a.** Calculer la valeur prédictive positive de ce test. Ce test est-il efficace sur la population étudiée ?
 - b. Dans cette question, toute trace de recherche même incomplète ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.
 Étudier l'efficacité du test lorsque 60 % des personnes d'une ville sont touchées par cette maladie.

EXERCICE 4 5 points

Le *volley-ball* se pratique sur un terrain qui a la fonne d'un rectangle ABCD de 18 mètres de longueur sur 9 mètres de largeur. La ligne *centrale* [IJ] s'étend sous le filet sur toute la largeur du terrain et sépare les deux camps. Les lignes *d'ataque* [HG] et [EF] sont peintes au sol dans chaque moitié de terrain, à 3 mètres du filet; elles sont communément appelées « *lignes des 3 mètres* »; (voir la Figure 1).

Les deux *poteaux* [PM] et [QN] sont écartés d'une distance MN. Leur implantation déborde de part et d'autre du terrain.

Un *filet* rectangulaire PQRS est tendu au sommet des deux *poteaux* (voir la Figure 2).



Dans les questions suivantes, on laissera les traits de construction apparents.

1. Sur le plan horizontal contenant le terrain, est placé un lampadaire [YO] muni en O d'une source lumineuse.

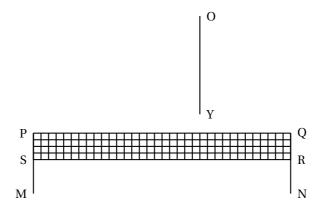
On a représenté sur l'**ANNEXE 1**, en perspective parallèle, les poteaux et le filet ainsi que le lampadaire.

- **a.** Quelle est l'ombre du point M? Construire l'ombre P' du point P.
- **b.** Terminer l'ombre sur le sol des poteaux et du filet. On hachurera l'ombre du filet.
- 2. On a représenté sur l'ANNEXE 2, en perspective centrale, la ligne d'horizon Δ et les images e , f et g des points E, F et G du terrain.
 - **a.** Construire le point de fuite w_1 de la droite (FG). Justifier que w_1 est aussi le point de fuite de la droite (EH),
 - **b.** Construire le point de fuite w₂ de la droite (EF),
 - c. En déduire la construction de l'image h du point H,
 - **d.** Construire le point de fuite w_3 de la droite (FH). Tracer les segments [eg] et [fh] puis construire les images i et j des points I et J,
 - **e.** Justifier que les droites (FH), (DG) et (EB) ont le même point de fuite puis terminer la construction du terrain (on ne représentera ni les poteaux ni le filet).

Nouvelle-Calédonie 3 novembre 2012

ANNEXE 1 (À remettre avec la copie)

EXERCICE 4 Question 1



ANNEXE 2 (À remettre avec la copie)

EXERCICE 4
Question 2

Λ

