Série professionnelle - décembre 2012

Partie 1 : CALCUL NUMÉRIQUE (OBLIGATOIRE) 12 points

M Paul envisage d'installer un chauffe-eau solaire sur son toit.

La société SOLARO lui propose un modèle équipé d'une cuve de 300 litres et de 2 capteurs solaires identiques.

Exercice 1 Les capteurs

- 1. Calculer la surface d'un capteur de forme rectangulaire, de largeur 1 mètre et de longueur 2.5 mètres.
- 2. La surface totale des 2 capteurs est de : cocher la bonne réponse.

 \square 2,5 m²

 $\Box 4 \text{ m}^2$

 \Box 5 m²

Exercice 2 La cuve 5 points

1. Calculer le volume V de la cuve cylindrique en utilisant la formule $V = \pi \times R^2 \times L$.

On donne : Longueur de la cuve L = 2 m; Rayon R = 0,22 m; $\pi \approx 3,14$.

Arrondir le résulttal à 0,1 près.

$$V =m^3$$
.

2. Le volume de la cuve correspond-il bien à la capacité de 300 litres annoncée par la société OLARO? Justifier.

Exercice 3 Le prix de vente

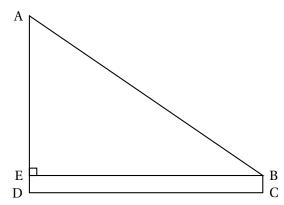
Le prix de vente du chauffe-eau solaire est de 330 000 F auquel il faut ajouter 10 % pour la pose.

- 1. Calculer 10 % de 330 000.
- 2. Calculer le prix du chauffe-eau posé.

Partie 2 : GEOMETRIE (A) ou STATISTIQUES (B) (AU CHOIX)

12 points

A: GÉOMÉTRIE


.

La figure ci-contre représente une vue de côté du châssis supportant un chauffe-eau solaire installé sur le toit.

On donne:

AE = 1,72m

EB = DC = 2,46 m

1. Donner la nature du triangle ABE, el du quadrilatère ABCO.

ABE est un...

ABCO est un....

2. Dans le triangle ABE, calculer la longueur AB en utilisant un théorème que vous citerez.

(Arrondir le résultat à l'unité).

- 3. L'angle $\widehat{BAE} = 55^{\circ}$.
 - **a.** Marquer cet angle sur la figure ci-dessus.
 - **b.** Calculer la valeur de l'angle ÂBE. On rappelle que la somme des angles d'un triangle est égale à 180°.

$$\widehat{ABE} = \dots$$

4. Cet angle est-il conforme aux spécifications calédoniennes d'ensoleillement qui précisent que la valeur de l'angle doit être comprise entre 30 et 40 degrés?
Justifier votre réponse.

Partie 2: B: STATISTIQUES

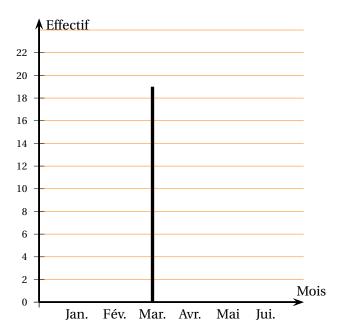
12 points

M Paul a relevé pour les six premiers mois de l'année, le nombre de journées d'ensoleillement :

1. Calculer la moyenne des journées d'ensoleillement sur les six premiers mois de l'année. (Arrondir au dixième).

$$\overline{x} = \dots$$

Le tableau ci-dessous représente le nombre de journées d'ensoleillement par mois.


Mois	Janvier	Février	Mars	Avril	Mai	Juin	Totaux
Effectif en jours (n_i)	24	20	19	22	15	10	N =
Fréquence en $\%$ (f_i)	22	•••	17			9	100 %

- **2.** Calculer le nombre total *N* de journées d'ensoleillement puis compléter ce tableau.
- 3. Calculer les fréquences en utilisant la formule :

$$f_i = \frac{n_i}{N} \times 100$$

et compléter le tableau ci-dessus. (Arrondir les résultats à l'unité).

- **4.** L'installation d'un chauffe eau solaire permet d'obtenir de l'eau chaude tous les jours à partir de 16 journées d'ensoleillement par mois. Quels sont les mois où l'eau chaude va manquer à M Paul? Expliquer votre réponse.
- **5.** Représenter les données de cette étude en complétant le diagramme en bâtons cidessous.

Partie 3 PROBLÈME (OBLIGATOIRE)

12 points

Pour cette partie, le candidat utilisera l'annexe de la page 6.

Pour recycler l'air de sa cuisine, M Paul a fait installer une hotte ayant 3 positions d'aspiration :

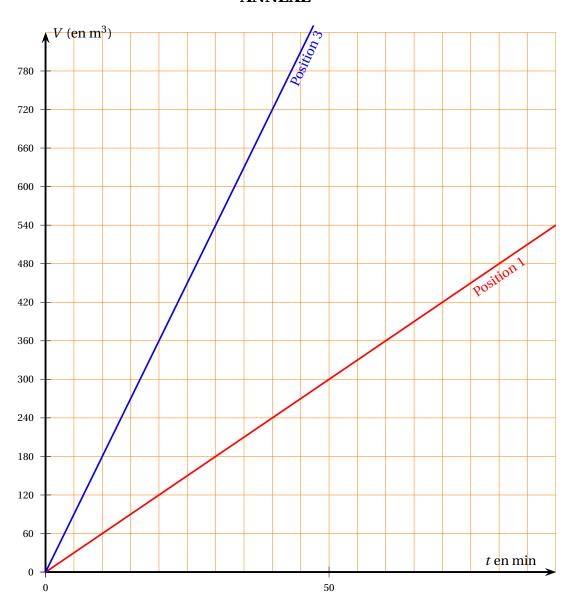
La position 1 correspond à 6 m³ d'air aspiré par minute.

La position 2 correspond à 12 m³ d'air aspiré par minute.

La position 3 correspond à 18 m³ d'air aspiré par minute.

- 1. La hotte est en **position 2**, soit 12 m³ d'air aspiré par minute.
 - **a.** Compléter le tableau de proportionnalité ci-dessous donnant le volume d'air aspiré V en fonction du temps t:

Points	0	A	В	С	D
Temps t (en min)	0	5	•••	45	60
Volume V (en m ³)	0		120	•••	720


décembre 2012 3 Nouvelle-Calédonie

- **b.** Dans le repère de l'annexe, placer les points dont les coordonnées figurent dans le tableau ci-dessus.
- c. Tracer la droite passant par ces points.
- **2.** La hotte est maintenant en **position 3**. La représentation graphique du volume d'air aspiré, en fonction du temps, correspondant à cette position, est une droite tracée en annexe.
 - **a.** Déterminer graphiquement, en m³, le volume d'air aspiré par la hotte en 20 minutes. Laisser apparents les traits utiles à la lecture.
 - **b.** Vérifier par un calcul, la valeur du volume d'air aspiré par la hotte en 20 minutes.
 - **c.** Déterminer graphiquement, en minutes, le temps nécessaire à l'aspiration de 540 m3d'air. Laisser apparents les traits utiles à la lecture.
- **3.** Pour recycler l'air de la cuisine, l'extraction doit être de plus de 600 ml en 35 minutes. En utilisant le graphique de l'annexe, indiquer la position à choisir en entourant la bonne réponse. Laisser les traits apparents sur le graphique.

Position 1 Position 2 Position 3

décembre 2012 4 Nouvelle-Calédonie

ANNEXE

