⋄ Brevet - Métropole juin 2009 ⋄Série professionnelle et technologique

Partie 1: (OBLIGATOIRE)

12 points

Exercice 1:

Pour produire du vin, un viticulteur utilise du raisin de trois variétés différentes : le cabernet, le sauvignon et le merlot.

La masse totale de raisin utilisé par le viticulteur est de 4000 kg.

- 1. La masse de cabernet représente 30 % de la masse totale.
 - Calculer, en kilogramme, la masse de cabernet utilisée.
- 2. La masse de sauvignon représente six dixièmes de la masse totale.

Entourer la fraction représentant la masse de sauvignon parmi les propositions suivantes :

2	3	3	4
6	- 5	- 6	3

3. Compléter le tableau ci-dessous :

Variété de raisin	cabernet	sauvignon	merlot
Masse en kg	•••	2 400	•••

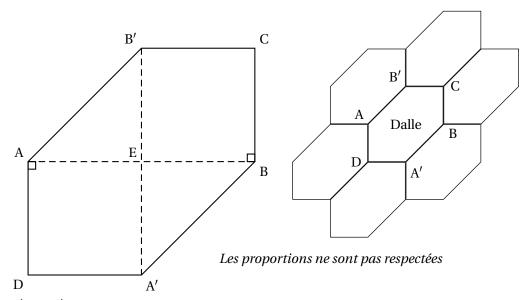
Exercice 2:

Compléter le tableau suivant :

x	-2	0,5	0
-3x + 2			
x^2			
2			
\boldsymbol{x}			

Exercice 3:

- 1. Développer et réduire l'expression A = 4(2x 1) + 5 en détaillant les étapes.
- **2.** Calculer la valeur numérique de l'expression B = 12x 5 pour x = -2.
- **3.** Résoudre l'équation : 12x 5 = 7.


Détailler les étapes de la résolution.

PARTIE 2 - A : Dominante géométrique

12 points

Pour cette partie, le candidat utilisera l'annexe 1

Monsieur DUCHEMIN, souhaite recouvrir sa terrasse avec des dalles ayant la forme suivante :

AEA'D et B'CBE sont deux carrés identiques de 20 cm de côté.

- 1. Placer sur le schéma de l'annexe 1, les points suivants :
 - A' symétrique de A par rapport à (CD)
 - B' symétrique de B par rapport à (CD)
 - E milieu de [CD]
- 2. Tracer sur l'annexe 1 les segments [AB'], [B'C], [CB], [BA'], [A'D].
- 3. Indiquer la nature du triangle EBA'.
- **4.** Déterminer en degré, la mesure de l'angle EBA'.
- 5. Calculer, en cm, la longueur A'B. Détailler le calcul et arrondir le résultat au dixième.
- **6.** Calculer, en cm², l'aire \mathcal{A}_1 du carré B'CBE.
- 7. Calculer, en cm², l'aire \mathcal{A}_2 du triangle EBA'.
- **8.** Calculer, en cm², l'aire totale \mathcal{A}_T de la dalle AB'CBA'D. Détailler le calcul.

PARTIE 2 - B: Dominante statistique

12 points

Exercice 1:

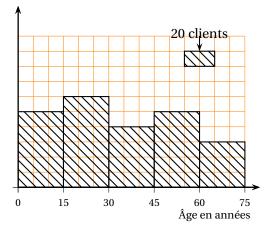
Une compagnie de transport propose à ses clients différentes réductions selon le jour de leur départ.

Ces réductions sont résumées dans le tableau suivant :

Jours de départ	Période	Réduction
Mardi et jeudi	Bleue	40 % de réduction
Vendredi	Blanche	15 % de réduction
Samedi, dimanche, lundi, mercredi	Rouge	Plein tarif : pas de réduction

Zoé est partie un dimanche à Paris. Elle a payé son billet 60 euros.

- 1. Zoé a-t-elle bénéficié d'une réduction? Justifier la réponse.
- 2. Calculer le prix payé, en euro, si Zoé était partie en période bleue. Détailler les calculs.
- **3.** Au mois de mars, Zoé était aussi partie à Paris. Elle avait payé son billet 51 euros au lieu de 60 euros plein tarif..
 - a. Calculer, en euro, le montant de la réduction obtenue.
 - **b.** Calculer le pourcentage de réduction par rapport au prix du billet plein tarif.
 - **c.** En déduire le jour de départ de Zoé.


Exercice 2:

La compagnie de transport a recensé sur une semaine, l'âge de ses clients. Les résultats de cette étude sont donnés dans le tableau ci-dessous :

1. À l'aide de l'histogramme, compléter la colonne « nombre de clients» du tableau.

Âge	Nombre de	Fréquence f_i (en	Centre de classe	
	clients n_i	%)	x_i	
]0; 15[100	22		
[15; 30[120	•••		
[30; 45[•••	17		
[45; 60[100	22		
[60; 75[•••	•••		
TOTAL	460	100		

- **2.** Compléter la colonne « fréquence». Arrondir à 1 %.
- **3.** Calculer le nombre de clients dont l'âge est compris entre 15 et 45 ans.
- **4.** Calculer, en année, l'âge moyen des clients. Arrondir à l'unité.

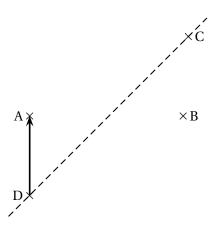
PARTIE 3 - B : OBLIGATOIRE

12 points

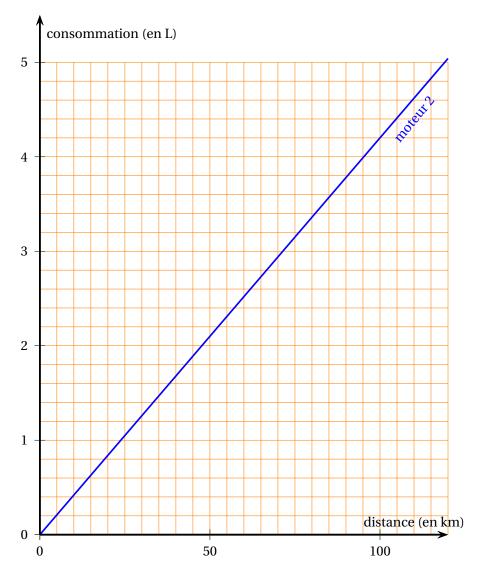
Pour cette partie,. le candidat utilisera l'annexe 2

Un constructeur automobile fabrique deux types de moteur.

- 1. On étudie le moteur 1 consommant 0,06 litre de carburant par kilomètre.
 - **a.** Compléter le tableau de proportionnalité ci-dessous donnant la consommation *C* en litre en fonction de la distance *d* parcourue en kilomètre.


juin 2009 3 Métropole

Distance d (en km)	0	10		60	80	100
Consommation <i>C</i> (en litre)	0		2,4	•••		6


- **b.** Dans le repère de l'annexe 2, placer les points dont les coordonnées figurent dans le tableau ci-dessus.
- c. Tracer la droite passant par ces points.
- **2.** On étudie maintenant le moteur 2. La représentation graphique de la consommation *C* en fonction de la distance *d* parcourue est une droite tracée en annexe 2.
 - **a.** Déterminer graphiquement en litre, la consommation du moteur pour une distance parcourue de 50 km. Laisser apparents les traits utiles à la lecture.
 - **b.** Déterminer graphiquement, en kilomètre, la distance parcourue avec 3,1 litres de carburant.Laisse apparents les traits utiles à la lecture.
- **3.** À l'aide du graphique de l'annexe 2, indiquer pour chaque type de moteur, la consommation de carburant, en litre, pour 100 km.
- 4. En déduire le type de moteur le plus économique.
- **5.** Le réservoir du véhicule équipé du moteur le plus économique a une capacité de 55 L. Calculer, en kilomètre; la distance parcourue avec un plein d'essence de 55 L.

juin 2009 4 Métropole

Annexe 1

Annexe 2

