

OPTION A: Résolution d'un ou plusieurs problèmes de mathématiques

Exercice 1

On considère la fonction f définie sur]0; $+\infty[$ par

$$f(x) = e^x - \ln(x).$$

1.

$$g(x) = xe^x - 1.$$

g différence de produits de fonctions définies sur $\mathbb R$ est définie sur $\mathbb R$ est également une différence de produits de fonctions dérivables sur $\mathbb R$.

Donc sur \mathbb{R} , $g'(x) = e^x + xe^x = e^x(1+x)$.

Comme quel que soit $x \in \mathbb{R}$, $e^x > 0$, le signe de g'(x) est celui de 1 + x.

- si x < -1, alors g'(x) < 0: la fonction g est décroissante sur $-\infty$; -1[;
- si x > -1, alors g'(x) > 0: la fonction g est croissante sur]-1; $+\infty[$;
- g'(-1) = 0; $g(-1) = -1e^{-1} 1 = -e^{-1} 1 \approx -1,467$ est le minimum de la fonction g sur \mathbb{R} .
- Limite en moins l'infini:

On sait que $\lim_{x \to -\infty} e^x = 0$ et que $\lim_{x \to -\infty} xe^x = 0$, donc $\lim_{x \to -\infty} g(x) = -1$.

• Limite en plus l'infini :

On sait que $\lim_{x \to -\infty} e^x = +\infty$, donc $\lim_{x \to -\infty} xe^x = +\infty$ et $\lim_{x \to -\infty} g(x) = +\infty$

2. D'après la question précédente : sur l'intervalle $[-1; +\infty[$, g est continue et dérivable et croit strictement de $\approx -1,467$ à plus l'infini.

D'après le théorème des valeurs intermédiaires, il existe $\alpha \in [-1; +\infty[$ unique tel que $g(\alpha) = 1$.

- **3.** On a $g(\alpha) = 0$, g(x) < 0 sur]0; α] et $g(x) > 0 \text{ sur }]\alpha$; $+\infty$].
- **4.** f fonction différence de deux fonctions dérivables sur]0; $+\infty[$ est dérivable sur cet intervalle et

$$f'(x) = e^x - \frac{1}{x} = \frac{xe^x - 1}{x} = \frac{g(x)}{x}.$$

5. Comme x > 0, le signe de la dérivée est celui du numérateur soit le signe de g(x) trouvé à la question 3.

Donc f'(x) > 0 sur $[\alpha; +\infty[$ et f est croissante sur cet intervalle; de même f'(x) < 0 sur $[0; \alpha]$ et f est décroissante sur cet intervalle.

Enfin $f(\alpha)$ est le minimum de la fonction sur]0; $+\infty[$

6. On a vu à la question 2. que $g(\alpha) = 0 \iff \alpha e^{\alpha} - 1 \iff \alpha e^{\alpha} = 1 \iff e^{\alpha} = \frac{1}{\alpha}$.

On en déduit par croissance de la fonction logarithme népérien : $\alpha = \ln\left(\frac{1}{\alpha}\right) = -\ln\alpha$.

Donc
$$f(\alpha) = e^{\alpha} - \ln(\alpha) = \frac{1}{\alpha} - \ln \alpha = \alpha^{-1} + \alpha$$
.

Exercice 2

Partie A

S pour tout $t \in [a; b]$, $f(t) \leqslant g(t)$ alors $g(t) \geqslant f(t) \iff g(t) - f(t) \geqslant 0$ donc d'après la propriété ci-dessus (positivité de l'intégrale) $\int_a^b [g(t) - f(t)] dt \geqslant 0 \iff \int_a^b g(t) dt - \int_a^b f(t) dt \geqslant 0$

$$0 \Longleftrightarrow \int_{a}^{b} g(t) dt \geqslant \int_{a}^{b} f(t) dt.$$

Soit n un entier naturel non nul. On appelle f_n la fonction définie sur $[0; +\infty[$ par

$$f_n(x) = \ln\left(1 + x^n\right)$$

et on pose $I_n = \int_0^1 \ln(1+x^n) dx$.

On note \mathscr{C}_n la courbe représentative de f_n dans un repère orthonormal $(O; \overrightarrow{\iota}, \overrightarrow{\jmath})$.

- 1. **a.** $f_1(x) = \ln(1+x)$ On a $\lim_{x \to +\infty} x = +\infty$, puis $\lim_{x \to +\infty} 1 + x = +\infty$ et enfin $\lim_{x \to +\infty} \ln(1+x) = +\infty$.
 - **b.** f_1 est dérivable sur $[0; +\infty[$ et sur cet intervalle $f_1'(x) = \frac{1}{1+x}$. omme $1+x\geqslant 1>0$, on a $f_1'(x)>0$: la fonction est (strictement) croissante sur $[0; +\infty[$ de $\ln 1=0$ à plus l'infini.
 - c. $I_1 = \int_0^1 \ln(1+x) dx$. On pose $\begin{cases} u(x) = \ln(1+x) & dv = dx \\ du(x) = \frac{1}{1+x} & v = x \end{cases}$

On intègre par parties : $I_1 = [x \ln(1+x)]_0^1 - \int_0^1 \frac{x}{1+x} dx$.

Soit
$$J = \int_0^1 \frac{x}{1+x} dx$$
.
On a $\frac{x}{1+x} = \frac{x+1-1}{1+x} = \frac{x+1}{1+x} - \frac{1}{x+1} = 1 - \frac{1}{x+1}$.
Donc $J = \int_0^1 1 dx - \int_0^1 \frac{1}{x+1} dx = [x]_0^1 - [\ln(1+x)]_0^1 = 1 - \ln 2$.

2. a. On intègre entre 0 et 1, donc :

 $0\leqslant x\leqslant 1\Longrightarrow 0\leqslant x^n\leqslant 1\Longrightarrow 1\leqslant 1+x^n\leqslant 2\Longrightarrow \ln 1\leqslant \ln (1+x^n)\leqslant \ln 2$ et en intégrant ces trois fonctions entre 0 et 1 :

 $0 \le I_n \le \int_0^1 \ln 2 dx$, soit $0 \le I_n \le \ln 2 < \ln e = 1$ et finalement $0 \le I_n \le 1$, quel que soit $n \in \mathbb{N}$.

- **b.** On sait que pour $x \le x \le 1$, la suite (x^n) est décroissante, donc $x^{n+1} < x^n \Longrightarrow 1 + x^{n+1} < 1 + x^n \Longrightarrow \ln(1 + x^{n+1}) < \ln(1 + x^n) \Longrightarrow I_{n+1} < I_n$: la suite (I_n) est décroissante
- **c.** Les intégrales I_n sont positives car intégrales de fonctions positives; elles sont donc minorées par 0.

Conclusion : minorée par zéro et décroissante la suite (I_n) est convergente vers une limite $\ell \geqslant 0$.

3.

$$g(x) = \ln(1+x) - x.$$

a. Différence de fonctions dérivables sur $[0\,;\,+\infty[$, la fonction g est dérivable sur cet intervalle et :

 $g'(x) = \frac{1}{1+x} - 1 = \frac{1 - (1+x)}{1+x} = \frac{-x}{1+x}$ qui est du signe de -x car $1+x \ge 1 > 0$, quel que soit $x \in]0$; $+\infty[$.

Comme $x \ge 0, -x \le 0$; la dérivée est négative, la fonction g est décroissante (strictement) sur $[0; +\infty[$.

b. $g \text{ décroit de } g(0) = \ln(1+0) - 0 = 0 \text{ à } \lim_{x \to +\infty} g(x)$

En écrivant $g(x) = x \left[\frac{\ln(1+x)}{x} - 1 \right]$, on voit que :

 $\lim_{x \to +\infty} \frac{\ln(1+x)}{x} = 0, \text{ donc } \lim_{x \to +\infty} \left[\frac{\ln(1+x)}{x} - 1 \right] = -1 \text{ et par produit de limites}:$ $\lim_{x \to +\infty} g(x) = -\infty.$

Conclusion : quel que soit $x \in [0; +\infty[$, alors $g(x) = \ln(1+x) - x \le 0 \iff \ln(1+x) \le x$.

Or quel que soit $x \in [0; +\infty[$, il existe $X \in [0; +\infty[$ tel que $x = X^n$ et on a donc $\ln(1+X^n) \leq X^n$ pour $X \in [0; +\infty[$.

En remplaçant l'étiquette X par x on a l'inégalité demandée.

c. Le résultat précédent $\ln(1+x^n) \leqslant x^n$ entraı̂ne que $\int_0^1 \ln(1+x^n) dx \leqslant \int_0^1 x^n dx$, soit :

$$I_n \leqslant \left[\frac{x^{n+1}}{n+1}\right]_0^1$$
 et enfin $I_n \leqslant \frac{1}{n+1}$

Or $\lim_{\substack{n\to+\infty\\n\to+\infty}}\frac{1}{n+1}=0$, donc d'après le théorème des gendarmes (puisque $I_n\geqslant 0$), $\lim_{\substack{n\to+\infty\\n\to+\infty}}I_n=0$.

Exercice 3

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1$$
 et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + n - 2$.

1.
$$u_1 = \frac{1}{3} + 0 - 2 = \frac{1}{3} - 2 = -\frac{5}{3};$$

 $u_2 = \frac{1}{3} \times \left(-\frac{5}{3}\right) + 1 - 2 = -\frac{5}{9} - 1 = -\frac{14}{9};$
 $u_3 = \frac{1}{3} \times \left(-\frac{14}{9}\right) + 2 - 2 = -\frac{14}{27}.$

2. a. Par récurrence :

Initialisation On a pour n = 4:

$$u_4 = \frac{1}{3} \times \frac{25}{27} + 4 - 2 = \frac{25}{81} + 2 = \frac{25 + 162}{81} = \frac{187}{81} \geqslant 0 = \text{la relation est vraie au rang 4.}$$

Hérédité:

Supposons qu'il existe $n \in \mathbb{N}$, avec $n \geqslant 4$ tel que $u_n \geqslant 0$, alors d'une part $n \geqslant 4 \Longrightarrow n-2 \geqslant 2$ et

 $u_n\geqslant 0\Longrightarrow \frac{1}{3}u_n\geqslant 0\Longrightarrow \frac{1}{3}u_n+n-2\geqslant 2\geqslant 0$, soit $u_{n+1}\geqslant 0$: la relation est vraie au rang n+1.

Conclusion : la relation est vraie au rang 4 et si elle est vraie à un rang supérieur ou égal à 4 elle est vraie au rang suivant : d'après le principe de récurrence si $n \geqslant 4$, alors $u_n \geqslant 0$.

- **b.** Pour $n \ge 5$, $u_n = \frac{1}{3}u_{n-1} + (n-1) 2$; or si $n \ge 5$, $n-1 \ge 4$ et $u_{n-1} \ge 0$, donc $u_n = \frac{1}{3}u_{n-1} + (n-1) 2 \ge (n-1) 2$ ou encore $u_n \ge n 3$.
- **c.** Comme $\lim_{n \to +\infty} (n-3) = +\infty$ le résultat précédent montre que $\lim_{n \to +\infty} u_n = +\infty$.
- **3.** On définit la suite $(v_n)_{n\in\mathbb{N}}$ par :

pour tout
$$n \in \mathbb{N}$$
, $v_n = -2u_n + 3n - \frac{21}{2}$.

a. Quel que soit $n \in \mathbb{N}$, $v_{n+1} = -2u_{n+1} + 3(n+1) - \frac{21}{2} = -2\left(\frac{1}{3}u_n + n - 2\right) + 3n + 3 - 2 = \frac{1}{3}(-2u_n) - 2n + 4 + 3n + 3 - \frac{21}{2} = \frac{1}{3}(-2u_n) + n + 7 - \frac{21}{2} = \frac{1}{3}(-2u_n) + n - \frac{7}{2} = \frac{1}{3}\left(-2u_n + 3n - \frac{21}{2}\right) = \frac{1}{3}v_n$:

La relation vraie pour tout naturel n, $v_{n+1} = \frac{1}{3}v_n$ montre que la suite $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison $\frac{1}{3}$ et de premier terme $v_0 = -2u_0 - \frac{21}{2} = -2 - \frac{21}{2} = -\frac{25}{2}$.

b. On sait que le terme général de la suite géométrique $(v_n)_{n\in\mathbb{N}}$ est :

$$v_n = v_0 \times \left(\frac{1}{3}\right)^n = -\frac{25}{2} \times \left(\frac{1}{3}\right)^n$$
 et en utilisant la définition de v_n :
 $2u_n = -v_n + 3n - \frac{21}{2} = \frac{25}{2} \times \left(\frac{1}{3}\right)^n + 3n - \frac{21}{2} \iff u_n = \frac{25}{4} \times \left(\frac{1}{3}\right)^n + \frac{3}{2}n - \frac{21}{4}$.

c. Soit la somme S_n définie pour tout entier naturel n par : $S_n = \sum_{k=0}^n u_k$.

Soit
$$s_1 = \sum_{k=0}^{n} \frac{25}{4} \times \left(\frac{1}{3}\right)^k$$
;

En multipliant par $\frac{1}{3}$, on obtient $\frac{1}{3}s_1 = \sum_{k=1}^{n+1} \frac{25}{4} \times \left(\frac{1}{3}\right)^k$ puis par différence entre les deux dernières expressions :

$$\frac{2}{3}s_1 = \frac{25}{4}\left(1 - \frac{1}{3^{n+1}}\right). \text{ En multipliant par } \frac{3}{2}, \quad s_1 = \frac{75}{8}\left(1 - \frac{1}{3^{n+1}}\right)$$
Soit $s_2 = \sum_{k=0}^{n} \frac{3}{2}k = \frac{3}{2} \times \frac{n(n+1)}{2} = \frac{3n(n+1)}{4}.$

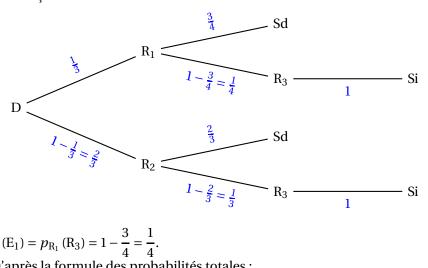
Enfin soit
$$s_3 = \sum_{k=0}^{n} -\frac{21}{4} = -\frac{21}{4}(n+1)$$
.

Donc
$$S_n = s_1 + s_2 + s_3 = \frac{75}{8} \left(1 - \frac{1}{3^{n+1}} \right) + \frac{3n(n+1)}{4} - \frac{21}{4}(n+1).$$

 $S_n = \frac{75}{8} \left(1 - \frac{1}{3^{n+1}} \right) + \frac{3(n+1)(n-7)}{4}.$

Exercice 4

1. On trace un arbre pondéré représentant tous les trajets possibles du départ D jusqu'au sommet S. On distingue les deux façons d'arriver au sommet : la façon directe notée « Sd », et la façon indirecte notée « Si ».

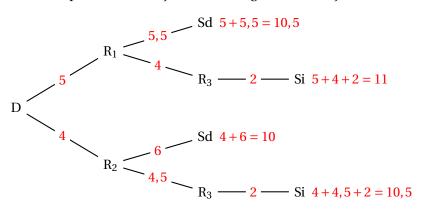


- p(E₁) = p_{R₁} (R₃) = 1 3/4 = 1/4.
 D'après la formule des probabilités totales :
 - $p(E_2) = p(R_3) = p(R_3 \cap R_1) + p(R_3 \cap R_2) = \frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{1}{3} = \frac{1}{12} + \frac{2}{9} = \frac{3+8}{36} = \frac{11}{36}$
 - $p(E_3) = p_{R_3}(R_1) = \frac{p(R_1 \cap R_3)}{p(R_3)} = \frac{\frac{1}{3} \times \frac{1}{4}}{\frac{11}{32}} = \frac{3}{11}.$
 - $p(E_4) = p_{Sd}(R_2) = \frac{p(Sd \cap R_2)}{p(Sd)}$.

Or
$$p(Sd) = p(Sd \cap R_1) + p(Sd \cap R_2) = \frac{3}{4} \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} = \frac{1}{4} + \frac{4}{9} = \frac{9+16}{36} = \frac{25}{36}$$
.

Donc
$$p(E_4) = \frac{\frac{2}{3} \times \frac{2}{3}}{\frac{25}{36}} = \frac{4}{9} \times \frac{36}{25} = \frac{16}{25}.$$

3. On modifie l'arbre précédent en rajoutant les longueurs des trajets.



a. On a:

•
$$p(X = 10) = p(R_2 \cap Sd) = \frac{2}{3} \times \frac{2}{3} = \frac{4}{9}$$

•
$$p(X = 11) = p(R_1 \cap R_3 \cap Si) = \frac{1}{3} \times \frac{1}{4} \times 1 = \frac{1}{12}$$

•
$$p(X = 10, 5) = p(R_1 \cap Sd) + p(R_2 \cap R_3 \cap Si) = \frac{1}{3} \times \frac{3}{4} + \frac{2}{3} \times \frac{1}{3} \times 1 = \frac{1}{4} + \frac{2}{9} = \frac{17}{36}$$

On en déduit la loi de probabilité de la variable aléatoire X.

x_i	10	10,5	11
$p(X=x_i)$	4	17	1
	9	36	12

b. On calcule l'espérance mathématique de X.

$$E(X) = 10 \times \frac{4}{9} + 10,5 \times \frac{17}{36} + 11 \times \frac{1}{12} = \frac{371,5}{36} \approx 10,3194 \text{ soit } 10,32 \text{ au centième près.}$$