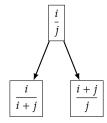
Exercice 1. Génération à la suite

Partie A - Les fils d'une fraction strictement positive

Soient i et j des entiers strictement positifs.

On dit que les deux **fils** de la fraction $\frac{i}{j}$ sont les fractions $\frac{i}{i+j}$ et $\frac{i+j}{j}$. On dit que $\frac{i}{i+j}$ est le **fils gauche** et que $\frac{i+j}{j}$ est le **fils droit** de $\frac{i}{j}$.

L'arbre ci-dessous illustre la situation.



Par exemple, $\frac{7}{5}$ a deux fils : son fils gauche est $\frac{7}{7+5} = \frac{7}{12}$ et son fils droit est $\frac{7+5}{5} = \frac{12}{5}$.

Q1: Quels sont les deux fils de $\frac{8}{9}$?

Q2: Trouver la fraction dont un des fils est $\frac{3}{8}$.

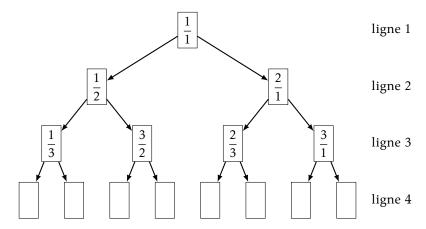
Q3: Trouver la fraction dont un des fils est $\frac{111}{7}$.

Q4: De manière générale, justifier que l'un des fils de $\frac{i}{i}$ est inférieur strictement à 1 et que l'autre est supérieur strictement à 1.

Partie B - Arbre et suite de Calkin-Wilf

L'arbre de Calkin-Wilf s'obtient en prenant la fraction $\frac{1}{1}$ à la racine et en associant à chaque fraction ses deux fils (comme dans la partie A).

On a commencé à représenter les quatre premières lignes de cet arbre :



Q5: Donner, sur sa copie, toutes les fractions de la ligne 4 de cet arbre.

Q6: Montrer que la fraction $\frac{44}{13}$ apparaît dans l'arbre. Sur quelle ligne apparaît-elle?

La suite de Calkin-Wilf est la suite $(u_n)_{n\geqslant 1}$ des fractions lues de gauche à droite, ligne par ligne en descendant l'arbre de Calkin-Wilf.

Ainsi, les premiers termes de la suite (u_n) sont :

$$u_1=\frac{1}{1}$$
,

$$u_2=\frac{1}{2},$$

$$u_3=\frac{2}{1}$$

$$u_2 = \frac{1}{2}, \qquad u_3 = \frac{2}{1}, \qquad u_4 = \frac{1}{3}, \qquad u_5 = \frac{3}{2}, \qquad u_6 = \frac{2}{3}, \qquad u_7 = \frac{3}{1}.$$

$$u_5=\frac{3}{2},$$

$$u_6=\frac{2}{3},$$

$$u_7 = \frac{3}{1}$$

Q7: Donner la fraction égale à u_{32} .

Q8: On constate que les deux fils de u_3 sont u_6 et u_7 .

Recopier et compléter, sur sa copie, les deux phrases suivantes (aucune justification n'est attendue).

«Les deux fils de u_6 sont u_m et u_m .»

«Si n désigne un entier naturel supérieur ou égal à 1, les deux fils de u_n sont u_n et u_n .»

Partie C - Suite de Stern

La suite de Stern est la suite $(v_n)_{n\geqslant 1}$ dont les termes sont les numérateurs des fractions lues de gauche à droite, ligne par ligne en descendant l'arbre de Calkin Wilf.

Cette suite commence donc par : $v_1 = 1$, $v_2 = 1$, $v_3 = 2$, $v_4 = 1$, $v_5 = 3$, $v_6 = 2$, $v_7 = 3$.

Q9: Donner les valeurs numériques de v_8 à v_{15} .

On admet que **pour tout entier naturel** n **non nul**, le dénominateur de la n^e fraction de la suite de Calkin-Wilf est égal au numérateur de la $(n + 1)^e$.

Autrement dit, on admettra que pour tout entier naturel n non nul, on a :

$$u_n = \frac{v_n}{v_{n+1}}.$$

Q10: Utiliser les questions précédentes pour montrer que, pour tout entier n supérieur ou égal à 1, on a les égalités suivantes : $v_{2n} = v_n$ et $v_{2n+1} = v_n + v_{n+1}$.

Q11: En déduire les valeurs numériques de v_{64} et v_{65} .

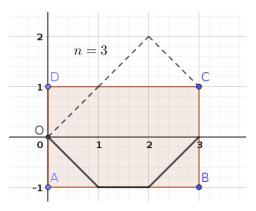
Exercice 2. Parcours gagnants!

Dans cet exercice, on se place dans un repère orthonormé d'origine O et n désigne un entier naturel non nul.

Max le robot est positionné initialement au point O. Il enchaîne n translations consécutives choisies de manière aléatoire et équiprobable parmi les translations de vecteurs $\vec{u}(1;1)$, $\vec{v}(1;0)$ ou $\vec{w}(1;-1)$. Max le robot parvient au point d'arrivée d'abscisse n.

On appelle **parcours** une liste ordonnée de n vecteurs choisis parmi les vecteurs $\vec{u}(1;1)$, $\vec{v}(1;0)$ ou $\vec{w}(1;-1)$. On appelle alors n la **taille** du parcours.

Dans le repère orthonormé ci-dessous, est représenté en pointillés un exemple de parcours de taille 3 de Max : $(\vec{u}, \vec{u}, \vec{w})$. Le point d'arrivée de Max est le point de coordonnées (3; 1).



Un parcours de taille n est dit **gagnant** si Max n'est jamais sorti du rectangle ABCD, côtés inclus, où A(0; -1), B(n; -1), C(n; 1), D(0; 1).

Ainsi, dans l'exemple ci-dessus, le parcours $(\vec{u}, \vec{u}, \vec{w})$ en pointillés, n'est pas gagnant alors que le parcours $(\vec{w}, \vec{v}, \vec{u})$, en trait plein, est gagnant.

L'objectif de cet exercice est de calculer la probabilité qu'un parcours de taille *n* donnée soit gagnant.

Partie A - Cas n = 3

Dans cette partie, on fixe n = 3.

Q1: Combien a-t-on de parcours possibles?

Q2: Citer les listes des parcours gagnants dont le premier vecteur est \vec{u} .

Q3: Citer les listes des parcours gagnants dont le premier vecteur est \vec{v} .

Q4: En déduire que la probabilité qu'un parcours de taille 3 soit gagnant est égale à $\frac{17}{27}$.

Partie B - Une simulation

On considère la fonction incomplète écrite en Python ci-dessous :

from random import *

```
def parcours(n):
    y = 0
    gagnant = True
    for x in range(1,n+1):
        vecteur = choice(["u","v","w"])
        if vecteur == "u":
            y = y + 1
        if vecteur == "w":
            ...
        if y > 1 or ...:
            gagnant = False
    return gagnant
```

- •L'instruction range (1,n+1) correspond à la liste des entiers 1, 2, ..., n.
- •L'instruction choice(["u","v","w"]) permet de choisir une lettre, au hasard, et de manière équiprobable, parmi les lettres u, v et w.

Préciser comment compléter les lignes 11 et 12 de la fonction parcours (n) afin qu'elle réalise une simulation d'un parcours de Max de taille n et renvoie True si ce parcours est gagnant et False sinon.

Partie C - Calculs de proche en proche

Dans la suite de l'exercice, on désigne par n un entier naturel non nul. On note :

- a_n le nombre de parcours de taille n qui sont gagnants et dont le point d'arrivée est de coordonnées (n; 1);
- b_n le nombre de parcours de taille n qui sont gagnants et dont le point d'arrivée est de coordonnées (n; 0);
- c_n le nombre de parcours de taille n qui sont gagnants et dont le point d'arrivée est de coordonnées (n;-1);

• On note T_n le nombre de parcours de taille n qui sont gagnants. On a donc $T_n = a_n + b_n + c_n$.

Q5: Quelles sont les valeurs de a_1 , b_1 , c_1 et T_1 ?

Q6: On admet que l'on a $a_n = c_n$.

- (a) Justifier la relation $a_{n+1} = a_n + b_n$.
- **(b)** Justifier la relation $b_{n+1} = 2a_n + b_n$.
- (c) Démontrer alors la relation $T_{n+2} = 2T_{n+1} + T_n$.

Q7: Recopier et compléter sur sa copie le tableau ci-dessous :

n	1	2	3	4	5
a_n					
b_n					
T_n					

Q8: Démontrer que la probabilité qu'un parcours de taille 5 soit gagnant est égal à $\frac{11}{27}$.

Partie D - Expression explicite

Les nombres T_n sont ceux définis à la partie C.

On rappelle que pour tout entier naturel non nul *n*, on a :

$$T_{n+2} = 2T_{n+1} + T_n$$

Ce résultat pourra être utilisé dans cette partie même s'il n'a pas été démontré dans la partie B.

Q9 : Déterminer les valeurs exactes des deux nombres réels distincts x_1 et x_2 qui sont solutions de l'équation $x^2 = 2x + 1$ et telles que $x_1 < x_2$.

Q10: On considère la suite (u_n) définie pour tout entier naturel n non nul par :

$$u_n = \frac{1 - \sqrt{2}}{2} x_1^n + \frac{1 + \sqrt{2}}{2} x_2^n$$

où x_1 et x_2 sont les nombres réels définis à la question précédente.

- (a) Vérifier que l'on a $u_1 = T_1$. On admettra que $u_2 = T_2$.
- (b) En utilisant $x_1^2 = 2x_1 + 1$ et $x_2^2 = 2x_2 + 1$, démontrer que, pour tout entier naturel n non nul, on a $u_{n+2} = 2u_{n+1} + u_n$.
- (c) En déduire une expression explicite de T_n en fonction de n.
- (**d**) En déduire la probabilité qu'un parcours de taille *n* soit gagnant en fonction de *n*.

Exercice 3. Pavages en or

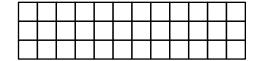
Pavages en or

Cet exercice comprend une page annexe à rendre avec la copie.

Définition : Soit *n* un entier naturel supérieur ou égal à 1.

Une **grille** est un quadrillage rectangulaire de largeur n carreaux et de hauteur h carreaux.

Par exemple, une grille de largeur 12 carreaux et de hauteur 3 carreaux est de la forme :



Partie A - Pavage d'une grille de hauteur 2 carreaux

Dans cette partie, on considère uniquement des grilles de largeur n carreaux et de hauteur 2 carreaux. On souhaite paver cette grille (c'est-à-dire la recouvrir entièrement) à l'aide de briques rectangulaires :

▷ celles placées horizontalement désignées par ○ ○

On ne peut pas superposer deux briques.

Par exemple, on peut débuter le pavage d'une grille de largeur 7 carreaux ainsi

Définition : Soit *n* un entier naturel supérieur ou égal à 1.

On note P(n) le **nombre de pavages** d'une grille de largeur n carreaux et de hauteur 2 carreaux.

- **Q1**: Déterminer P(1) et P(2).
- **Q2:** On admet que P(3) = 3 et P(4) = 5.

Sur les grilles données en annexe A2, à rendre avec la copie, dessiner tous les pavages pour n = 3 et n = 4.

Q3: a) Justifier que pour tout $n \ge 1$, P(n + 2) = P(n + 1) + P(n).

On pourra distinguer si la dernière colonne à droite contient une brique verticale ou non.

- b) En déduire P(5) et P(6).
- **Q4:** a) Recopier et compléter l'algorithme suivant afin de déterminer P(n) pour $n \ge 3$.

```
def P(n):
    p1=....
    p2=....
    for i in range(3,n+1):
        p=....
        p1=p2
        p2=p
    return p
```

Rappel: L'instruction range (3,n+1) correspond à la liste des entiers 3, 4, ..., n.

b) Donner P(10) sans justification.

Partie B - Le nombre d'or s'y cache

Définition:

On considère deux nombres réels strictement positifs a et b tels que a > b.

Le nombre d'or est l'unique rapport $\phi = \frac{a}{b}$ tel que $\frac{a+b}{a} = \frac{a}{b}$.

Q5: a) Montrer que ϕ est solution de l'équation $x^2 - x - 1 = 0$.

b) En déduire que $\phi = \frac{1+\sqrt{5}}{2}$ et en donner une valeur approchée à 10^{-3} près.

Q6: a) Pour $n \ge 1$, on définit les nombres $F_n = \frac{1}{\sqrt{5}} \phi^{n+1}$.

En arrondissant si besoin les résultats à 0,1 près, recopier et compléter le tableau suivant :

n	1	2	3	4	5	10
P(n)						
Fn						

b) Que remarquez-vous?

Partie C - Pavage d'une grille de hauteur 3 carreaux

On considère dans cette partie une grille de largeur *n* carreaux et de hauteur 3 carreaux. On souhaite réaliser un pavage formé des mêmes briques rectangulaires utilisées dans la partie A.

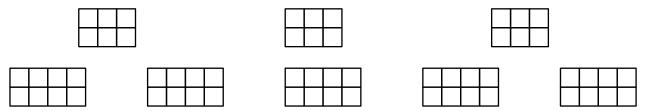
- **Q7 :** Dans cette question uniquement, on considère une grille de largeur n = 3 carreaux. Est-il possible de paver une telle grille? Justifier.
- **Q8**: Soit *n* un entier supérieur ou égal à 1.

À quelle condition sur n peut-on réaliser un pavage avec ces briques?

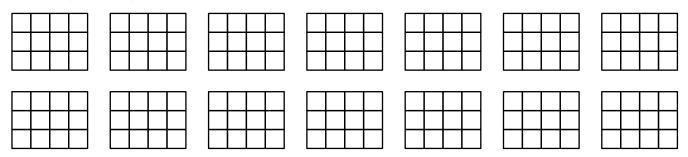
- Q9: Déterminer le nombre de pavages d'une grille de largeur 2 carreaux et de hauteur 3 carreaux.
- **Q10:** À l'aide des grilles données en annexe C, à rendre avec la copie, dessiner tous les pavages pour n = 4.

Annexe - Pavages en or - À rendre avec la copie

Annexe A2 (Partie A)



Annexe C (Partie C)



Corrigé de l'exercice 1Génération à la suite

Partie A - Les fils d'une fraction strictement positive

Q1: Son fils gauche est $\frac{8}{8+9} = \frac{8}{17}$ et son fils droit est $\frac{8+9}{9} = \frac{17}{9}$

Q2: La fraction est $\frac{3}{5}$

Q3: La fraction est $\frac{104}{7}$

Q4: 0 < i < i + j donc, en divisant par i + j qui est supérieur à 0, on obtient : $0 < \frac{i}{i+j} < 1$

De plus i > 0 donc j < i + j. En divisant par j qui est supérieur à 0, on obtient : $1 < \frac{i+j}{j}$

Le fils gauche est inférieur à 1 et le fils droit est supérieur à 1.

Autre méthode : $\frac{i+j}{j} = \frac{i}{j} + \frac{j}{j} = \frac{i}{j} + 1 > 1$ et $\frac{i}{i+j} = \frac{i+j-j}{i+j} = \frac{i+j}{i+j} - \frac{j}{i+j} = 1 - \frac{j}{i+j} < 1$

Partie B - Arbre et suite de Calkin-Wilf

Q1: If y a huit fractions: $\frac{1}{4}$; $\frac{4}{3}$; $\frac{3}{5}$; $\frac{5}{2}$; $\frac{2}{5}$; $\frac{5}{3}$; $\frac{3}{4}$; $\frac{4}{1}$

Q2: $\frac{31}{13}$ a pour fils droit $\frac{44}{13}$; $\frac{18}{13}$ a pour fils droit $\frac{31}{13}$; $\frac{5}{13}$ a pour fils droit $\frac{18}{13}$ $\frac{5}{8}$ a pour fils gauche $\frac{5}{13}$; $\frac{5}{3}$ a pour fils gauche $\frac{5}{8}$.

Comme $\frac{5}{3}$ est sur la ligne 4, on en déduit que $\frac{44}{13}$ est bien dans l'arbre.

Plus précisément, $\frac{5}{8}$ est sur la ligne 5, $\frac{5}{13}$ est sur la ligne 6, $\frac{18}{13}$ est sur la ligne 7, $\frac{31}{13}$ est sur la ligne 8, et $\frac{44}{13}$ est sur la ligne 9.

Q3: Il y 8 nombres sur la ligne 4 donc $u_{7+8} = u_{15}$ est le dernier nombre de la ligne 4.

Il y $8 \times 2 = 16$ nombres sur la ligne 5 (car chaque fraction a deux fils) donc $u_{15+16} = u_{31}$ est le dernier nombre de la ligne 6.

Par conséquent u_{32} est le premier nombre de la ligne 7. u_{32} est donc le fils gauche de u_{16} . u_{16} est le fils gauche de u_{8} qui est lui même le fils gauche de u_{4} .

Ainsi: $u_8 = \frac{1}{4}$; $u_{16} = \frac{1}{5}$ et $u_{32} = \frac{1}{6}$

Q4: Les deux fils de u_6 sont u_{12} et u_{13} . Les deux fils de u_n sont u_{2n} et u_{2n+1} .

Partie C - Suite de Stern

Q5: $v_8 = 1$; $v_9 = 4$; $v_{10} = 3$; $v_{11} = 5$; $v_{12} = 2$; $v_{13} = 5$; $v_{14} = 3$; $v_{15} = 4$

- **Q6:** D'une part, le fils gauche de u_n est $\frac{v_n}{v_n + v_{n+1}}$ (voir définition de la partie A).
 - D'autre part, d'après la réponse à la question 4) de la partie B, le fils gauche de u_n est $u_{2n} = \frac{v_{2n}}{v_{2n+1}}$.
 - Ainsi $v_{2n} = v_n$ et $v_{2n+1} = v_n + v_{n+1}$.
- **Q7:** Pour tout entier *n* supérieur ou égal à 1, on a : $v_n = v_{2n}$
 - Donc: $v_1 = v_2 = v_4 = v_8 = v_{16} = v_{32} = v_{64}$ donc $v_{64} = 1$.
 - Pour tout entier n supérieur ou égal à 1, on a : $v_{2n+1} = v_n + v_{n+1}$.
 - Donc: $v_{32} + v_{33} = v_{65}$ donc $v_{65} = 1 + v_{33}$ or $v_{16} + v_{17} = v_{33}$ donc $v_{33} = 1 + v_{17}$ or $v_8 + v_9 = v_{17}$ donc $v_{17} = 1 + 4 = 5$.
 - Ainsi $v_{33} = 1 + v_{17} = 1 + 5 = 6$; $v_{65} = 1 + v_{33} = 1 + 6 = 7$.


```
from math import *
def fg(x): # x de la forme (i,j), calcule le fils gauche de x
   (i,j) = x
   return (i,i+j)
def fd(x): # x de la forme (i,j), calcule le fils droit de x
   (i,j) = x
   return (i+j,j)
def nouvel_étage(L): # à partir d'un étage de l'arbre, calcule l'étage suivant
   nL = []
   for x in L:
     nL.append(fg(x))
     nL.append(fd(x))
   return nL
def arbre(nb_{\acute{e}tage}): # nb_{\acute{e}tage} > \theta, construit les n premiers étages de l'arbre
   A = [[(1,1)]]
   for i in range(1,nb_étage):
     A.append(nouvel\_\acute{e}tage(A[i-1]))
   return A
def u(n): # n > 0, suite de Calkin-Wilf
   nb\_\acute{e}tage = int(log(n,2)) + 1
   A = arbre(nb_étage)
   L = []
   for X in A:
     L = L + X
   return L[n-1]
def v(n): #n > 0, suite de Stern
   (i,j) = u(n)
   return i
EXEMPLES D'UTILISATION
>> fg((3,5))
(3, 8)
>>> fd((3,5))
(8, 5)
>>> arbre(4)
[[(1, 1)],
[(1, 2), (2, 1)],
[(1, 3), (3, 2), (2, 3), (3, 1)],
[(1, 4), (4, 3), (3, 5), (5, 2), (2, 5), (5, 3), (3, 4), (4, 1)]]
>>> u(10)
(3, 5)
>>> v(10)
0.00
```

Corrigé de l'exercice 2Parcours gagnants!

Q1: On a $3 \times 3 \times 3 = 27$ parcours possibles de Max.

Q2: On en a 5: $(\vec{u}, \vec{v}, \vec{v})$, $(\vec{u}, \vec{v}, \vec{w})$, $(\vec{u}, \vec{w}, \vec{u})$, $(\vec{u}, \vec{w}, \vec{v})$, $(\vec{u}, \vec{w}, \vec{v})$.

Q3: On en a 7: $(\vec{v}, \vec{u}, \vec{v})$, $(\vec{v}, \vec{u}, \vec{w})$, $(\vec{v}, \vec{v}, \vec{u})$, $(\vec{v}, \vec{v}, \vec{v})$, $(\vec{v}, \vec{v}, \vec{w})$, $(\vec{v}, \vec{v}, \vec{w})$, $(\vec{v}, \vec{w}, \vec{u})$, $(\vec{v}, \vec{w}, \vec{v})$.

Q4: De manière analogue à la question 2, il y a 5 parcours gagnants de Max dont le premier vecteur de la liste est \vec{w} . Ainsi on a 5 + 7 + 5 = 17 parcours gagnants parmi 27 parcours possibles.

Partie C - Calculs de proche en proche

Q5: $a_1 = b_1 = c_1 = 1$ et $T_1 = 3$.

- **Q6:** (a) Il y a deux manières d'obtenir un parcours gagnant arrivant au point (n + 1; 1): soit avec un parcours gagnant arrivant au point (n; 1) suivi de la translation de vecteur \vec{v} ; soit avec un parcours gagnant arrivant au point (n;0) suivi de la translation de vecteur \vec{u} . Ainsi on obtient la relation $a_{n+1} = a_n + b_n$.
 - (b) Il y a trois manières d'obtenir un parcours gagnant arrivant au point (n + 1; 0): soit avec un parcours gagnant arrivant au point (n; 1) suivi de la translation de vecteur \vec{w} ; soit avec un parcours gagnant arrivant au point (n;0) suivi de la translation de vecteur \vec{v} ; soit avec un parcours gagnant arrivant au point (n;-1) suivi de la translation de vecteur \vec{u} . Ainsi on obtient la relation $b_{n+1} = a_n + b_n + c_n = 2a_n + b_n$.
 - (c) $T_{n+2} = 2a_{n+2} + b_{n+2}$ $T_{n+2} = 2(a_{n+1} + b_{n+1}) + (2a_{n+1} + b_{n+1})$ $T_{n+2} = 4a_{n+1} + 3b_{n+1}$ où $4a_{n+1} + 2b_{n+1} = 2(2a_{n+1} + b_{n+1}) = 2T_{n+1}$ et $b_{n+1} = 2a_n + b_n = T_n$ Ainsi on obtient bien $T_{n+2} = 2T_{n+1} + T_n$.

Q7:	п	1	2	3	4	5
	a_n	1	2	5	12	29
	b_n	1	3	7	17	41
	T_n	3	7	17	41	99

Q8 : Pour n = 5, on a $3^5 = 243$ parcours possibles dont 99 qui sont gagnants. Ainsi la probabilité qu'un parcours de Max soit gagnant est égale à $\frac{99}{243} = \frac{11}{27}$.

Partie D - Expression explicite

Q9: On se ramène à l'équation du second degré $x^2 - 2x - 1 = 0$. $\Delta = (-2)^2 - 4 \times 1 \times (-1) = 8$

Comme $\Delta > 0$, on en déduit que cette équation admet deux solutions réelles qui sont $x_1 = \frac{-(-2) - \sqrt{8}}{2 \times 1} = 1 - \sqrt{2}$ et

$$x_2 = \frac{-(-2) + \sqrt{8}}{2 \times 1} = 1 + \sqrt{2}.$$

Q10: (a) D'après le tableau de la question C.3, on a $T_1 = 3$.

$$u_{1} = \frac{1 - \sqrt{2}}{2} x_{1} + \frac{1 + \sqrt{2}}{2} x_{2}$$

$$u_{1} = \frac{1 - \sqrt{2}}{2} (1 - \sqrt{2}) + \frac{1 + \sqrt{2}}{2} (1 + \sqrt{2})$$

$$u_{1} = \frac{1}{2} [(1 - \sqrt{2})^{2} + (1 + \sqrt{2})^{2})]$$

$$u_{1} = \frac{1}{2} [(1 - 2\sqrt{2} + 2 + 1 + 2\sqrt{2} + 2]$$

$$u_{1} = 3$$

Ainsi on a bien $u_1 = T_1$.

(b) Soit *n* un entier naturel non nul, on a :

$$u_{n+2} = \frac{1 - \sqrt{2}}{2} x_1^{n+2} + \frac{1 + \sqrt{2}}{2} x_2^{n+2}$$

$$u_{n+2} = \frac{1 - \sqrt{2}}{2} x_1^n x_1^2 + \frac{1 + \sqrt{2}}{2} x_2^n x_2^2$$

$$u_{n+2} = \frac{1 - \sqrt{2}}{2} x_1^n (2x_1 + 1) + \frac{1 + \sqrt{2}}{2} x_2^n (2x_2 + 1)$$

$$u_{n+2} = 2 \frac{1 - \sqrt{2}}{2} x_1^{n+1} + \frac{1 - \sqrt{2}}{2} x_1^n + 2 \frac{1 + \sqrt{2}}{2} x_2^{n+1} + \frac{1 + \sqrt{2}}{2} x_2^n$$

$$u_{n+2} = 2 \left[\frac{1 - \sqrt{2}}{2} x_1^{n+1} + \frac{1 + \sqrt{2}}{2} x_2^{n+1} \right] + \left[\frac{1 - \sqrt{2}}{2} x_1^n + \frac{1 + \sqrt{2}}{2} x_2^n \right]$$

On obtient bien finalemen

$$u_{n+2} = 2u_{n+1} + u_n$$

(c) D'après les deux questions précédentes, on en déduit que les suites (T_n) et (u_n) sont égales car elles ont les mêmes premiers termes de rang 1 et 2, et vérifient la même relation de récurrence.

Pour tout entier naturel *n* non nul, on a donc :

$$T_n = u_n$$

$$T_n = \frac{1 - \sqrt{2}}{2} x_1^n + \frac{1 + \sqrt{2}}{2} x_2^n$$

$$T_n = \frac{1 - \sqrt{2}}{2} (1 - \sqrt{2})^n + \frac{1 + \sqrt{2}}{2} (1 + \sqrt{2})^n$$

$$T_n = \frac{(1 - \sqrt{2})^{n+1} + (1 + \sqrt{2})^{n+1}}{2}$$

(d) La probabilité p_n qu'un parcours de Tom de taille n soit gagnant est :

$$p_n = \frac{T_n}{3^n}$$

$$p_n = \frac{(1 - \sqrt{2})^{n+1} + (1 + \sqrt{2})^{n+1}}{2 \times 3^n}$$

Corrigé de l'exercice 3Pavages en or

Pavages en or

Q1: P(1) = 1 et P(2) = 2

Q2: cf annexe

- **Q3 :** a) Si la dernière colonne comporte une brique verticale, il reste les n + 2 1 colonnes précédentes à paver ce qui correspond à P(n + 1) possibilités.
 - Si la dernière colonne comporte une brique horizontale alors il y a en-dessous ou au-dessus d'elle une autre brique horizontale. Il reste ainsi les n + 2 2 colonnes précédentes à paver ce qui correspond à P(n) possibilités.
 - Donc, au total, on a P(n + 2) = P(n + 1) + P(n)

b)
$$P(4) = P(2+2) = P(3) + P(2) = 3 + 2 = 5$$

$$P(5) = P(3 + 2) = P(4) + P(3) = 5 + 3 = 8$$

Q4: a) Ligne 2: p1=1 Ligne 3: p2=2 Ligne 5: p=p1+q1

b) P(10) = 89

Partie B - Le nombre d'or s'y cache

Q5: a) $\frac{a+b}{a} = \frac{a}{b}$ est équivalent à $1 + \frac{b}{a} = \frac{a}{b}$ et donc $\phi = 1 + \frac{1}{\phi}$.

On a donc en multipliant par ϕ , $\phi^2 = \phi + 1$ et ϕ solution de $x^2 - x - 1 = 0$

b) On a $\Delta=1+4=5$ et $\varphi=\frac{1+\sqrt{5}}{2}\simeq 1,618$ car $\varphi>0.$

	n	1	2	3	4	5	10	15	20
Q6 : a)	P(n)	1	2	3	5	8	89	987	10946
	\mathbf{F}_n	1,2	1,9	3,1	4,96	8,0	89,0	987,0	10946,0

b) F_n donne la même valeur arrondie à l'entier que P(n)

Partie C - Pavage d'une grille de hauteur 3 carreaux

On considère dans cette partie une grille de largeur n carreaux et de hauteur 3 carreaux.

On souhaite réaliser un pavage formé des mêmes briques rectangulaires utilisées dans la partie A.

Q7 : Une brique est constituée de 2 carreaux donc un pavage comporte nécessairement un nombre pair de briques au total.

Une grille de largeur 3 carreaux comporte 9 carreaux au total d'où une impossibilité.

Q8: Il faut que *n* soit être un nombre pair.

Q10: Cf annexe (il y a 11 pavages car P(k+1) = 4P(k) - P(k-1) avec n = 2k)

Olympiades 2024

11

Annexe - Pavages en or - Correction

Annexe A2 (Partie A)

Annexe C (Partie C)

