Durée: 4 heures

EXERCICE 1 points

On se propose de calculer l'intégrale :

$$J = \int_0^1 \frac{x e^x}{(1 + e^x)^3} \, dx.$$

1. Calculer les deux intégrales :

$$A = \int_0^1 \frac{e^x}{1 + e^x} dx$$

$$B = \int_0^1 \frac{e^x}{(1 + e^x)^2} dx$$

2. Déterminer trois nombres réels *a*, *b* et *c* tels que pour tout nombre réel *t* positif ou nul on ait :

$$\frac{1}{(1+t)^2} = a + \frac{bt}{1+t} + \frac{ct}{(1+t)^2}$$
 (1)

3. En posant $t = e^x$ dans l'égalité (1), calculer l'intégrale :

$$I = \int_0^1 \frac{1}{(1 + e^x)^2} dx.$$

- **4.** a. À l'aide d'une intégration par parties exprimer *J* en fonction de *I*.
 - **b.** En déduire la valeur de J. À l'aide de la calculatrice donner une valeur approchée de J à 10^{-2} près.

EXERCICE 2 points

1. Calculer les racines complexes z_1 et z_2 de l'équation :

$$z^2 - \frac{1}{5}z + \frac{1}{10} = 0.$$

 z_1 désignant la racine de partie imaginaire positive.

2. Soit θ le nombre réel de l'intervalle $\left[0; \frac{\pi}{2}\right[$ tel que $\tan \theta = 3$.

 $\text{Montrer que } z_1 \text{ et } z_2 \text{ sont \'egaux respectivement \`a} \, \frac{\cos\theta + \mathrm{i}\sin\theta}{10\cos\theta} \text{ et } \frac{\cos\theta - \mathrm{i}\sin\theta}{10\cos\theta}.$

3. On pose, pour tout entier naturel n,

$$v_n = z_1^n + z_2^n.$$

Montrer que v_n est un nombre réel que l'on calculera en fonction de n et θ .

Baccalauréat C A. P. M. E. P.

4. Montrer que $10\cos\theta = \sqrt{10}$. Majorer $|v_n|$, puis en déduire que la suite (v_n) est convergente et déterminer sa limite.

EXERCICE 3 points

On donne sur un cercle quatre points distincts A, B, C, D (C et D n'étant pas diamétralement opposés).

Le cercle de centre D passant par A recoupe la droite (CA) en A'. Le cercle de centre D passant par B recoupe la droite (CB) en B'.

Le but de l'exercice est de prouver qu'il existe une rotation transformant A en A' et B en B' et de déterminer ses éléments caractéristiques.

1. On note H et K les projetés orthogonaux de D sur (CA) et (CB). Comparer les angles $(\overrightarrow{DA}, \overrightarrow{DA}')$ et $(\overrightarrow{DA}, \overrightarrow{DH})$.

établir une propriété analogue pour $(\overrightarrow{DB}, \overrightarrow{DB}')$.

- **2.** Montrer que : $(\overrightarrow{DA}, \overrightarrow{DH}) = (\overrightarrow{AD}, \overrightarrow{AC}) + \frac{\pi}{2}$ (modulo π) et : $(\overrightarrow{DB}, \overrightarrow{DK}) = (\overrightarrow{BD}, \overrightarrow{DC}) + \frac{\pi}{2}$ (modulo π).
- 3. Qu'en déduit-on pour $(\overrightarrow{DA}, \overrightarrow{DA'})$ et $(\overrightarrow{DB}, \overrightarrow{DB'})$? On note θ une mesure de $(\overrightarrow{DA}, \overrightarrow{DH})$ modulo 2π . Conclure.

PROBLÈME points

Le but du problème est de résoudre une équation différentielle et d'étudier, sur $[0; +\infty[$, une solution particulière de cette équation.

Partie A

- **1.** Résoudre l'équation différentielle (E_1) y'' + 4y' + 4y = 0.
- **2.** On considère l'équation différentielle (E_2) y'' + 4y' + 4y = 4x 16.
 - **a.** Montrer que la fonction g définie sur \mathbb{R} par g(x) = x 5 est solution de (E_2) .
 - **b.** Montrer qu'une fonction f est solution de (E_2) si et seulement si f g est solution de (E_1) .

Déduire de 1. et de 2. b. l'ensemble des solutions de (E_2) .

Déterminer la fonction f solution de (E_2) qui vérifie :

$$f(0) = -2$$
 et $f'(0) = -3$.

Baccalauréat C A. P. M. E. P.

Partie B

On considère la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = (2x+3)e^{-2x} + x - 5.$$

On appelle \mathscr{C} la courbe représentative de f dans un repère orthonormal $\left(0;\overrightarrow{\iota},\overrightarrow{\jmath}\right)$ (unité 1 cm).

- 1. Déterminer la fonction f' dérivée de la fonction f, puis la fonction f'' dérivée de f'.
- **2.** étude de f'.
 - **a.** Montrer que pour tout x de l'intervalle $[0; +\infty[, f''(x)]$ est strictement positif.
 - **b.** Montrer que la limite de e^{-2x} en $+\infty$ est 0. En déduire la limite de f'(x) quand x tend vers $+\infty$.

Donner le tableau de variation de f' sur $[0; +\infty[$.

c. Montrer que l'équation f'(x) = 0 admet une solution unique sur $[0; +\infty[$. On la note α .

Justifier que $1 \le \alpha \le 1, 1$ à l'aide de la calculatrice.

- **d.** En déduire le signe de f'(x) sur $[0; +\infty[$.
- **3.** étude de f
 - **a.** Dresser le tableau de variation de f. Quelles sont les valeurs décimales approchées par défaut de f(1) et f(1,1) données par la calculatrice?
 - **b.** Tracer la droite Δ d'équation y = x 5 et \mathscr{C} .

Partie C

Soit F la primitive qui s'annule en zéro de la fonction f définie dans la partie B. On se propose de calculer F par deux méthodes différentes.

1. Montrer que pour tout x de l'intervalle $[0; +\infty[$, on a :

$$f'(x) + 4f(x) + 4F(x) = 2x^2 - 16x - 11.$$

En déduire une expression de F(x).

2. Calculer F(x) à l'aide d'une intégration par parties.