

EXERCICE 1 commun à tous les candidats (physique-chimie et mathématiques)

5 points

Le parkour

Le parkour est une discipline sportive acrobatique qui consiste à franchir des obstacles urbains ou naturels sans l'aide de matériel. La photographie ci-contre montre un exemple de saut réalisé par une traceuse. Une traceuse s'apprête à sauter du haut d'un mobilier de rue, noté bloc A sur la **figure 1**, dans le but d'atteindre le bloc B distant de 4,0 m du bloc A et plus bas de 2,0 m.

Source https://www.radiofrance.fr/mouv/le-parkour-un-sport-en-voie-de-feminisation-6723019

La traceuse est modélisée par un point matériel M de masse m évoluant dans le champ de pesanteur terrestre \overrightarrow{g} . Dans ce modèle, on néglige la résistance de l'air et on suppose que la traceuse n'est soumise qu'à son poids. L'étude est menée dans le référentiel terrestre supposé galiléen et les blocs A et B sont immobiles.

La position de la traceuse sera repérée par le point M de coordonnées (x(t); y(t)) dans le repère représenté **figure 1**, la variable t, exprimée en secondes, étant étudiée sur l'intervalle [0; 1].

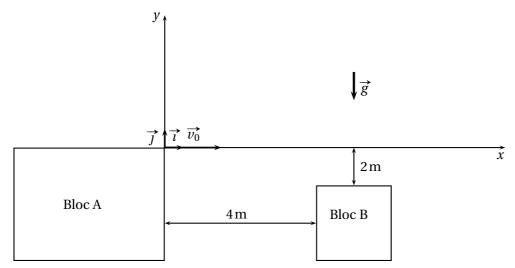


Figure 1 : schématisation des conditions du saut

La traceuse arrive en courant à l'extrémité du bloc A. À l'instant t=0, elle s'élance du point origine O avec un vecteur vitesse initiale $\overrightarrow{v_0}$ orienté selon l'axe horizontal $(Ox): \overrightarrow{v_0} = v_0 \overrightarrow{\imath}$ avec $v_0 = 7,0 \,\mathrm{m}\cdot\mathrm{s}^{-1}$. On cherche à savoir si la traceuse réussira à atteindre le bloc B. Données :

Baccalauréat STL A. P. M. E. P.

- masse de la traceuse $m = 50 \,\mathrm{kg}$
- Intensité du champ de pesanteur $g = 9.8 \,\mathrm{m}\cdot\mathrm{s}^{-2}$.
- 1. Donner la direction et le sens du vecteur poids ainsi que l'expression littérale de sa norme.
- **2.** En appliquant la deuxième loi de Newton au point M, montrer que les coordonnées $a_x(t)$ et $a_y(t)$ du vecteur accélération \vec{a} sont :

$$\begin{cases} a_x(t) = 0 \\ a_y(t) = -g \end{cases}$$

Pour t appartenant à l'intervalle [0; 1], on note $v_x(t)$ et $v_y(t)$ les coordonnées du vecteur vitesse \overrightarrow{v} :

- v_x est la primitive de la fonction a_x vérifiant $v_x(0) = v_0$;
- v_y est la primitive de la fonction a_y vérifiant $v_y(0) = 0$.
- **3.** Déterminer les expressions $v_x(t)$ et $v_y(t)$.

Pour t appartenant à l'intervalle [0; 1], x(t) et y(t) sont les coordonnées du point M donnant la position de la traceuse :

- x est la primitive de la fonction v_x vérifiant x(0) = 0;
- y est la primitive de la fonction v_y vérifiant y(0) = 0.
- 4. Justifier que les lois horaires du mouvement de la traceuse s'écrivent :

$$\begin{cases} x(t) = v_0 t \\ y(t) = -\frac{1}{2}gt^2 \end{cases}$$

5. Dans l'intervalle [0; 1], résoudre l'équation y(t) = -2 dans laquelle la grandeur y est exprimée en mètres. Arrondir la solution à 10^{-3} .

On note t_c la solution de l'équation y(t) = -2.

Pour la suite de l'exercice, on prendra pour t_c , la valeur 0,64 s.

- **6.** Déterminer l'abscisse $x(t_c)$ de la position de la traceuse à l'instant t_c .
- 7. Déterminer la valeur numérique de l'instant où l'abscisse de la position de la traceuse est égale à 4,0 m.
- **8.** En déduire la valeur numérique de l'ordonnée de la position de la traceuse à l'instant où l'abscisse de cette position est 4,0 m.
- 9. En utilisant les résultats précédents, en déduire si la traceuse atteint le bloc B.

EXERCICE 3 4 points

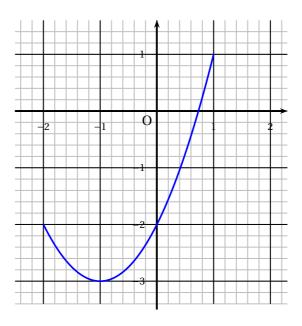
(mathématiques)

Dans cet exercice, les quatre questions sont indépendantes. Il faut traiter les quatre questions.

Question 1

On considère ci-dessous la courbe représentative d'une fonction f définie sur [-2; 1]. Par lecture graphique, déterminer f(0).

Baccalauréat STL A. P. M. E. P.



Question 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2e^x + 3x - 2$.

Déterminer, en la justifiant, la limite de la fonction f lorsque x tend vers $-\infty$.

Question 3

Soit f la fonction définie sur \mathbb{R} par $f(x) = (3x + 2) e^{x-1}$. En détaillant les calculs, justifier que f(1) est un entier.

Question 4

Soit f la fonction définie sur]0; $+\infty[$ par $f(x) = 2x + 1 - \frac{1}{x}$ Déterminer une primitive F de la fonction f sur]0; $+\infty[$