Baccalauréat, Caen

Dans un cercle donné de rayon $R$, on mène une corde et le diamètre perpendiculaire ; soient $O$ le centre du cercle, $A$ l’une des extrémités de la corde, $P$ le po.int d’intersection de la corde et du diamètre ; le triangle $OPA$, tournant autour de $OP$, engendre un cône, et posant $\cos x=t$, on exprimera en fonction de $R$ et de $t$ le volume du cône ; puis, supposant variable l’angle de génération, on étudiera la variation de ce volume.

Considérant enfin la valeur de $t$ qui donne le volume maximum, on construira à l’aide de la règle et du compas, sans faire intervenir aucun calcul d’approximation, l’angle de génération correspondant. (On expliquera les constructions effectuées).

Les Journées Nationales
L’APMEP

Publications
Ressources

Actualités et Informations
Base de ressources bibliographiques

 

Les Régionales de l’APMEP